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ABSTRACT

There has been much progress in ab initio nuclear many-body theory in recent years, including a first

attempt on an ab initio based mass table and a calculation of the neutron skin of 208Pb based on two-

plus three-nucleon interactions from chiral Effective Field Theory, with a sophisticated statistical

uncertainty quantification. Going forward, there is a need to continue extending the capabilities of

ab initio nuclear many-body theory to observables in medium-mass and heavy open-shell nuclei,

enhance the description of exotic nuclei, and to build on theoretical and computational advances

in nuclear structure to tackle nuclear dynamics. These advances in ab initio nuclear many-body

theory, along with new methods for carrying controlled uncertainties into the relevant calculations,

will provide new insight into nuclear forces and phenomena, as well as important input for searches

for Beyond-Standard Model physics or nuclear astrophysics.

All of these goals requires theoretical and computational improvements of current nuclear

many-body methods in order to enhance the stability of predictions, determine proper theoretical

error bars, and to provide greater computational efficiency. In this body of work, we pursue these

directions for the In-Medium Similarity Renormalization Group (IMSRG), which has become an

important tool in ab initio nuclear many-body theory over the past decade.

We will discuss three major contributions in these directions. First, we present a model

for the future infrastructure of IMSRG production codes using tensor network architectures, and

show that it can soften the memory requirements and favorably improve the efficiency of IMSRG

calculations. Second, we present a methodological improvement, the so-called reference state

ensemble, that allows us to mitigate truncation errors in the IMSRG flow without performing

calculations at a higher truncation rank. We show that the reference state ensemble improves

the stability and accuracy of the IMSRG flow by “informing” the underlying operator basis about

the features of the many-body system’s excitations. Last but not least, we use a technique called

Dynamic Mode Decomposition (DMD) for emulating the IMSRG solution which avoids the cost of

complete integration to convergence. We also present a parametric emulation technique, powered

by DMD and trained on IMSRG data, which we show can robustly predict the IMSRG results for



Hamiltonians, including chiral two- plus three-nucleon Hamiltonians with more than 20 parameters.
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CHAPTER 1

OVERVIEW

There has been much progress in ab initio [3] nuclear many-body theory in the past decade, which

is illustrated in Figure 1.1. For example, there has been a first attempt on an ab initio based mass

table [12] and the neutron skin of 208Pb has been computed based on two- plus three-nucleon

interactions from chiral Effective Field Theory [8, 9], with a sophisticated statistical uncertainty

quantification [6].

The next tasks of ab initio nuclear theory are (i) to extend its capabilities into the domain of

medium-mass and heavy open-shell nuclei, which exhibit strong collective correlations associated

with intrinsic deformation, (ii) to enhance the description of exotic nuclei, where weak-binding and

the coupling to continuum degrees of freedom lead to subtle new phenomena, and (iii) to build on

the theoretical and computational advances in nuclear structure in order to tackle nuclear dynamics.

In this way, ab initio nuclear many-body calculations with controlled uncertainties will provide

crucial new input to tackle grand scientific challenges, like the search for Beyond-Standard Model

physics [2], or the improvement of our understanding of supernovae and neutron star mergers, and

their detailed role in nucleosynthesis.

All of this requires theoretical and computational improvements of current nuclear many-body

methods, in order to enhance the stability of predictions, determine proper theoretical error bars,

and to provide much greater computational efficiency. In the present work, we pursue next steps in

these directions for the In-Medium Similarity Renormalization Group (IMSRG), which has become

an important tool in ab initio nuclear many-body theory over the past decade.

Chapter 2 introduces some essential aspects of nuclear many-body theory theory in second

quantization that are needed for the discussion in this work; following that is Chapter 3, which is

dedicated to a detailed presentation of the IMSRG. The IMSRG is an ab initio, or first principles,

method for solving the nuclear many-body problem. Importantly, the IMSRG can also be used

to pre-process interactions and operators for use in other methods (Valence-Space IMSRG [11],
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IM-GCM for Double Beta Decay [13], IN-NCSM [4]). Functionally, the IMSRG decouples a

target reference state, e.g. the ground state, from all other excitations in the many-body basis via

a continuous, unitary transformation that effectively block-diagonalizes the Hamiltonian (Chapter

4 discusses the model Hamiltonians used for the analyses in this work). Excitations are gradually

suppressed according to a particular decoupling scheme which separates diagonal elements from

off-diagonal elements in a chosen operator basis. Typically, the most convenient operator basis

is generated through a process called normal-ordering in the language of second quantization

(Chapter 2). Then, instead of calculating the IMSRG transformation explicitly, we solve for the

transformation implicitly through integration of the IMSRG flow equations (Chapter 3.3), which

involves a commutator of the Hamiltonian and an object called the generator; this object generates

the desired behavior of off-diagonal elements of the Hamiltonian over the integration range. The

commutator itself generates terms of increasingly higher-body interactions, and tracking all of them

is not computationally feasible. Thus, we must introduce a truncation scheme. In the IMSRG(2),

for example, we truncate all operators in the chosen operator basis at the two-body level. The

IMSRG is favorable due its polynomial scaling in basis size. Additionally, the IMSRG is built

in a framework which allows systematic improvement toward exact solutions via the increase in

truncation rank, which introduces increasingly higher-fidelity physics information.

Chapter 5 introduces a model for the future infrastructure of the IMSRG production codes, the

motivation for which is built on the exchange of tensor libraries on the backend. We also show

how the Tensor Train decomposition (Chapter 5.3) can be used to rewrite some objects in the

flow equations. This technique holds the key for efficiently leveraging the ever-evolving hardware

landscape, and lets us benefit from the work of library vendors who know best how to adapt tensor

calculations to new platforms.

Chapter 6 discusses the use reference state ensembles for the IMSRG, which is a technique

for potentially mitigating truncation errors while avoiding the computational cost of performing

IMSRG at a higher truncation rank. We show that error due to truncation at two-body operators

manifests as a loss of unitarity in the IMSRG(2) transformation. The severity of this loss depends

2
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Figure 1.1 Figured updated from [5]. Each filled square represents a nucleus that has been successfully
calculated using IMSRG.

on the choice of operator basis for the particular problem we study, and is related to the importance

of induced terms which have been truncated. The goal of the reference state ensemble is to

introduce additional physics information to the IMSRG(2) via correlations in the operator basis. In

the reference state ensemble scheme, we construct a reference state from statistically-mixed many-

body basis configurations (e.g. approximate ground- and excited-state configurations), and then

use that reference as a starting point for the IMSRG(2). In this way, we introduce more descriptive

physical information to the standard operator basis of the IMSRG. We show that the reference state

ensemble is a controllable method for improving divergences in the IMSRG(2) related to truncation

error, as well as improving accuracy in the evolved energy spectrum.

Chapter 7 presents a method for emulating the IMSRG solution using an approach called Dy-

3



namic Mode Decomposition (DMD), which is based on Koopman operator theory. The Koopman

operator is a linear operator which advances measurement functions of a nonlinear dynamical

system forward in time [7, 1]. The eigendecomposition of the Koopman operator characterizes the

dynamics of the system, as expressed through measurements of observables that depend on the

system’s state variables. Thus, it can be understood as shifting the description of the system to

coordinates where the nonlinear dynamics look linear, analogous to canonical transformations in

the phase-space formulation of classical mechanics. DMD is a finite-measurement, discrete-time

method for approximating the Koopman operator. The DMD operator is formulated as the best-fit

linear operator which propagates the dynamical system forward one step in time [10]. The DMD

is informed by direct measurements of the evolving system. We show that the DMD operator,

built from IMSRG(2) observations and informed by simple physical constraints on the predicted

dynamics, offers a method by which we may construct a true emulator for the IMSRG(2) solution.

DMD emulation allows us to forecast the IMSRG(2) evolution for a particular Hamiltonian with

high accuracy and short computational wall-time, at the cost of a few polynomial-time iterations

of the IMSRG(2) solution which serve as “training points” for the emulator. We also present

an interpolation engine (IE) for the IMSRG, constructed from DMD, which we use to train an

interpolative model of the parametric IMSRG, i.e. a model where the inputs include Hamilto-

nian coupling parameters as well as the dynamical variable. We show that fitted IE model (IEM)

produces predictions with robust accuracy for up to 24 coupling parameters in the Hamiltonian.

The parametric emulation of the IMSRG(2) offer a strategy for undertaking the large volumes of

calculations required for uncertainty quantification (UQ) of the IMSRG, so that we may accurately

assign theoretical constraints on the output. Chapter 9 demonstrates this capability by performing

sensitivity anlyses of observables computed in IMSRG(2) to the parameters of the underlying chiral

interactions.
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CHAPTER 2

MANY-BODY THEORY IN SECOND QUANTIZATION

2.1 Introduction

Much of the nuclear theory toolbox leveraged by this body of work is constructed within the

“second quantization” formalism for many-body quantum theory. Second quantization is concerned

with modeling a space which contains multiple quantum systems, e.g. the nucleus of an atom for

which the number of particles is not constant. Second quantization, which exists inside of Fock

space, provides tools which allow us to navigate between individual Hilbert spaces, and is the most

convenient framework for quantum many-body theory.

The purpose of this chapter is to provide context and definitions for these tools which are used

in following chapters. Much of the information here is compiled from Shavitt and Bartlett [6] and

may take on the flavor of quantum chemistry as a result; however, the notation and techniques are

general enough to be understood in the context of nuclear theory.

2.2 Many-Body Basis

The “many-body basis” may be understood as a chosen collection of states, varying particle

number, which exist inside the Fock space. Formally, the fermionic Fock space is the direct sum

over all antisymmetrized tensor products of Hilbert spaces of quantum states up to 𝑁 particle

numbers,

F (𝐻) = C ⊕ 𝐻 ⊕ A (𝐻 ⊗ 𝐻) ⊕ . . .A
(
𝐻⊗𝑁

)
, (2.1)

where A is an operator which generates the antisymmetrization. Equivalent notation which

compresses the definition reads

F𝐴 (𝐻) =
𝑁⊕
𝑛=0
A𝐻⊗𝑛. (2.2)

The Fock states are acted upon by operators which also exist inside the Fock space. For

the purposes of this work, we are interested in fermionic Fock space because the techniques we

apply are meant to model nuclear systems. Fermionic Hilbert spaces are antisymmetric under

the exchange of particles. The complete single particle basis spans the Hilbert space of a single
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particle, and is uniquely characterized by a set of quantum numbers that are associated with the

static and dynamical properties of that particle. [6]. The Hilbert space for an 𝐴-body system is

constructed as a product of single-particle Hilbert spaces, which is spanned by tensor products

of the single-particle states. We notate the single particle basis 𝜙𝑝, which encodes the set of all

possible single particle states indexed by 𝑝 = 1, 2, 3, . . . . We assume that the single particle basis

is orthonormal. Schematically, we might write the Hilbert space for an 𝐴-body system as,

𝐻 (𝐴) =
𝐴⊗

𝑛=0
𝜙𝑛. (2.3)

The antisymmetrizer A enforces that condition that product states, elements of the 𝐴-body

Hilbert space in Equation 2.3, be antisymmetric under the exchange of particle, e.g. for a two-

particle product state,

𝜙
(1)
𝑞 ⊗ 𝜙

(2)
𝑝 = −𝜙(1)𝑝 ⊗ 𝜙

(2)
𝑞 . (2.4)

The antisymmetrizer A generates the so-called Slater determinant, such that

Φ = A
(
𝜙
(1)
𝑝 ⊗ 𝜙

(2)
𝑞

)
=

√︂
1
2

(
𝜙
(1)
𝑝 ⊗ 𝜙

(2)
𝑞 − 𝜙

(1)
𝑞 ⊗ 𝜙

(2)
𝑝

)
=

√︂
1
2

�������𝜙
(1)
𝑝 𝜙

(2)
𝑝

𝜙
(1)
𝑞 𝜙

(2)
𝑞

������� .
(2.5)

For brevity, we will often write a Slater determinant Φ as a ket of single particle states, or

maybe single particle indices,

Φ = |𝜙𝑝𝜙𝑞𝜙𝑟 . . .⟩ , (2.6)

where, intuitively, the single particle states collected in this string are occupied within this particular

state. The antisymmetrizer has been implicitly absorbed into the notation. Note that e.g. |𝜙𝑝𝜙𝑞⟩ =

− |𝜙𝑞𝜙𝑝⟩. In principle, there an infinite number of unoccupied states which we could write for this

particular state, but there is no reason to write all of them. Additionally, we might choose to drop

the 𝜙 for brevity, settling on raw indices 𝑝, 𝑞, 𝑟, . . . to represent these single particle states which

are occupied in the Slater determinant.
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Of course, the order in which the single particle states appear in this string is deliberate, and

the fermionic nature of the Slater determinant guarantees that permuting the order of these states

results in a change of phase. Written succinctly [6],

�̂� |𝑝𝑞𝑟 · · ·⟩ = (−1)𝜎(�̂�) |𝑝𝑞𝑟 · · ·⟩ . (2.7)

Permuting the indices of Slater determinant |𝑝𝑞𝑟 · · ·⟩ via �̂� results in a phase change of order 𝜎(�̂�),

which we must track whenever we perform operations on the Slater determinants in our relevant

bases. This signature of the permutation counts the minimum number of two particle exchanges

that is requried to produce the final ordering.

The Slater determinants span a complete orthonormal basis of the fermionic subspace of 𝐻𝐴,

where

⟨𝑝𝑞𝑟 · · · |𝑝𝑞𝑟 · · ·⟩ = 1, (2.8)

when the indices of the bra are in the same ordering as the indices of the ket. Note that indices in

bras or kets can always be permuted to match the ordering, at the cost of a phase.

2.3 Annihilation and Creation Operators

In the context of second quantization, the annihilation and creation operators allow us to add

or remove (respectively) occupied states in a particular Slater determinant. Interpreted a different

way, the annihilation and creation operators connect states of differing number of particles, within

the Fock space. We denote the annihilation operator by 𝑎𝑝 and its Hermitian adjoint, the creation

operator, as 𝑎
†
𝑝 [6]. The operators are defined by their action on the Slater determinant, in the

following way:

𝑎𝑝 |𝑝𝑞𝑟 · · ·⟩ = |𝑞𝑟 · · ·⟩ , 𝑎𝑝 |𝑞𝑟 · · ·⟩ = 0, (2.9)

𝑎†𝑝 |𝑞𝑟 · · ·⟩ = |𝑝𝑞𝑟 · · ·⟩ , 𝑎†𝑝 |𝑝𝑞𝑟 · · ·⟩ = 0. (2.10)

Here we show that the annihilation operator 𝑎𝑝 removes a particle from the occupied single-particle

state associated with 𝑝 in the target Slater determinant. Similarly, the creation operator 𝑎†𝑝 adds

a new particle to the single-particle state 𝑝. Attempting to annihilate a particle in a state which
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is already unoccupied, or attempting to create a particle in a state which is already occupied, is

forbidden. Note that this zero result is different from the vacuum state |0⟩, which is defined as the

Slater determinant with no occupied single-particle states. It is clear that any application of an

annihilator to this vacuum leads to a zero result, i.e.

𝑎𝑝 |0⟩ = 0 = ⟨0| 𝑎†𝑝 . (2.11)

The fermionic creation and annihilation operators obey the following anticommutation relations

[6], which will be important for our subsequent discussion:

{𝑎𝑝, 𝑎𝑞} = {𝑎†𝑝, 𝑎†𝑞} = 0; {𝑎†𝑝, 𝑎𝑞} = 𝛿𝑝𝑞 . (2.12)

Note that any 𝐴-body Slater determinant can be constructed by a string of creation operators

acting on the vacuum [2],
𝐴∏

𝑘=1
𝑎†𝑝𝑘 |0⟩ = |𝑝1𝑝2 · · · 𝑝𝐴⟩ . (2.13)

In this representation, we could compute the matrix element associated with two Slater determinants

(sometimes called the overlap) via

⟨𝑞1𝑞2 · · · 𝑞𝐵 |𝑝1𝑝2 · · · 𝑝𝐴⟩ = ⟨0|
𝐵∏
𝑙=1

𝑎𝑞𝑙

𝐴∏
𝑘=1

𝑎†𝑝𝑘 |0⟩ . (2.14)

The result depends on the number of operators 𝐴 and 𝐵, as well as the ordering of indices. If 𝐵 = 𝐴

and indices 𝑝𝑘 , 𝑞𝑙 have matching order, then the result is 1. In this work, we will only concern

ourselves with particle number conserving operators, so we can assume that 𝐵 = 𝐴 unless stated

otherwise.

In practical applications within nuclear theory, the vacuum state is an inefficient reference point

from which to define the many-body basis; this is because of the resolution scale of the nuclear

interaction [2]. More importantly, the the vacuum state contains no information about the energy

scales and occupation density of the nuclear matter we wish to describe. As a result, we may

also define the creation and annihilation operators with respect to a particular reference state |Φ⟩

(called the Fermi vacuum for a Slater determinant reference state), which is often chosen as an

10



approximation to the ground state. In this case, we would define particle and hole operators, which

are distinct in the kind of single particle state index on which they operate. The hole operators,

usually indexed by 𝑖, 𝑗 , 𝑘, . . . , act on states which are occupied in |Φ⟩. The particle operators,

usually indexed by 𝑎, 𝑏, 𝑐, . . . , act on states which are unoccupied in |Φ⟩. We can construct excited

Slater determinants by acting on the reference state with combinations of creation and annihilation

operators, e.g.

𝑎†𝑎𝑎𝑖 |Φ⟩ = |Φ𝑎
𝑖 ⟩ , (2.15)

where the operator pair 𝑎†𝑎𝑎𝑖 annihilates a particle in the occupied (hole) state 𝑖 from the reference

and creates a particle in the unoccupied (particle) state 𝑎. This action can be interpreted as a

one-particle excitation relative to the reference state, and we may define a complete many-body

basis as the set of all possible one-, two-, up to 𝐴-particle excitations for an 𝐴-body reference state.

2.4 Normal-Ordering and Wick Contractions

The process of subtracting off contractions in the product of operators is called normal-ordering.

The normal-ordered product of two operators �̂��̂� reads

𝑛
[
�̂��̂�

]
= �̂��̂� − 𝐴𝐵, (2.16)

where the contraction, in this context also called the Wick contraction, 𝐴𝐵 is defined as the

expectation value of �̂��̂� in the chosen reference state (e.g. the vacuum, in this case),

𝐴𝐵 ≡ ⟨0| �̂��̂�|0⟩ . (2.17)

By construction, this definition of the contraction leads to the consequence that the expectation

value of the normal-ordered operator 𝑛
[
�̂��̂�

]
is zero, in the reference state for which the contraction

was defined:

𝐴𝐵 = ⟨0| �̂��̂� |0⟩ − ⟨0|𝑛
[
�̂��̂�

]
|0⟩ (2.18)

=⇒ ⟨0|𝑛
[
�̂��̂�

]
|0⟩ = 0 by Eq. 2.17. (2.19)
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These definitions extend to any length string of operator products, but will not be derived here

(refer to Shavitt and Bartlett [6], Hergert et al. [2]). These definitions also extend to any general

reference state in which we define the Wick contraction.

We can exchange any two operators inside the normal-ordered product at the cost of a sign

change, e.g.

𝑛
[
�̂��̂�

]
= −𝑛

[
�̂� �̂�

]
. (2.20)

Note that the contractions induced by permuting operators in the operator string have been taken

care of by the expansion in terms generated by the normal-ordering process.

Nuclear many-body theory primarily deals with pairs of annihilator/creator operators, e.g. 𝑎†𝑝𝑎𝑞

or 𝑎𝑝𝑎
†
𝑞. The Wick contraction of operator pair 𝑎𝑝𝑎

†
𝑞 may be written, by virtue of Equation 2.16,

as

𝑎𝑝𝑎
†
𝑞 = 𝑎𝑝𝑎

†
𝑞 − 𝑛

[
𝑎𝑝𝑎

†
𝑞

]
= {𝑎𝑝, 𝑎

†
𝑞} = 𝛿𝑝𝑞, (2.21)

where we have written the only operator pair which gives a nonzero contraction, with respect to

the vacuum. In this case, a particle in state 𝑞 is created in the vacuum and a particle in state 𝑝 is

annihilated — thus, the contraction is 1 for 𝑝 = 𝑞 and zero otherwise. Interpreted a different way,

this contraction is the expectation value of the operator 𝑎𝑝𝑎
†
𝑞 in the vacuum.

In a similar fashion, the Wick contraction of operator pairs with respect to the general reference

is defined as

𝑎𝑎𝑎
†
𝑏
= 𝛿𝑎𝑏

𝑎
†
𝑖
𝑎 𝑗 = 𝛿𝑖 𝑗 .

(2.22)

We can interpret the results from the perspective of occupied and unoccupied states in the reference.

The particle operator contraction is the expectation value ⟨Φ|𝑎𝑎𝑎†𝑏 |Φ⟩, and is only nonzero when

𝑏 = 𝑎. The hole operator contraction is the expectation value ⟨Φ|𝑎†
𝑖
𝑎 𝑗 |Φ⟩, and is only nonzero

when 𝑖 = 𝑗 .

For a general reference state, the expectation value ⟨Φ|𝑎†𝑝𝑎𝑞 |Φ⟩ defines the one-body density

matrix:

𝜌𝑞𝑝 = ⟨Φ|𝑎†𝑝𝑎𝑞 |Φ⟩ = 𝑎†𝑝𝑎𝑞 ⟨Φ|Φ⟩ + ⟨Φ|𝑁
[
𝑎†𝑝𝑎𝑞

]
|Φ⟩ . (2.23)
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Note that the reference state is normalized so that ⟨Φ|Φ⟩ = 1. The definition of the Wick contraction

implies the expectation value of the normal-product ⟨Φ|𝑁
[
𝑎
†
𝑝𝑎𝑞

]
|Φ⟩ must vanish [2]. It follows

that the reference expectation value of any normal-product, with respect to that reference state,

must vanish (analogous to Equation 2.19):

⟨Φ|𝑁 [· · ·] |Φ⟩ = 0. (2.24)

Finally, note that we can drop the index distinction in Equation 2.22 altogether using the

anticommutation relations in Equation 2.12. Starting with the definition of the contraction between

hole operators and allowing the indices to span the entire single particle basis, we can define a new

contraction 𝑎𝑝𝑎
†
𝑞 which is related to 𝑎

†
𝑝𝑎𝑞 in the following way:

⟨Φ|𝑎†𝑝𝑎𝑞 |Φ⟩ = 𝑎†𝑝𝑎𝑞 = 𝜌𝑞𝑝

⟨Φ|𝑎𝑞𝑎†𝑝 |Φ⟩ = 𝑎𝑞𝑎
†
𝑝 = ⟨Φ| (𝛿𝑝𝑞 − 𝑎†𝑝𝑎𝑞) |Φ⟩ = 𝛿𝑝𝑞 − 𝜌𝑞𝑝 .

(2.25)

These two contractions automatically encode the behavior of expectation values of hole/particle

pairs of operators in the reference state.

For a single Slater determinant reference state, the elements of 𝑎†𝑝𝑎𝑞 are nonzero only where

both 𝑝, 𝑞 indices are occupied states in the reference. If either 𝑝 or 𝑞 (or both) are unoccupied

states, the element is zero for one of two reasons: 1) the element vanishes due to Slater determinant

orthogonality or 2) the action of a particle-index annihilator on the reference yields a zero result.

Therefore, for a single Slater determinant reference state, the contraction 𝑎𝑞𝑎
†
𝑝 yields elements

which are 0 where the one-body density matrix is nonzero, and nonzero where the one-body

density matrix is 0.

For brevity and convenience, we usually work in the eigenbasis of the one-body density matrix:

𝜌𝑝𝑞 = 𝑛(𝑝)𝛿𝑝𝑞, (2.26)

where the factor 𝑛(𝑝) encodes the occupation of the single particle state 𝑝, i.e.,

𝑛(𝑝) =


0 if p is unoccupied in ref. (particle state)

1 if p in occupied in ref. (hole state)
(2.27)
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Analogously to Equation 2.25, we define a particle occupation factor 𝑛(𝑝), such that

𝑛(𝑝) = 1 − 𝑛(𝑝). (2.28)

These occupation factors are convenient for expressing occupation information in a general sin-

gle particle basis because the diagonality of the one-body density 𝜌 eliminates summations in

expansions of operators (e.g., refer to the IMSRG(2) flow equations later in Chapter 3, Equation

3.18).

2.5 Wick’s Theorem

Whether with respect to the vacuum or a reference state, Wick’s theorem states that any (particle-

number conserving) string of creation and annihilation operators can be written as the sum of all

possible normal-product contractions [2, 1, 6]:

𝑎†𝑝1
· · · 𝑎†𝑝𝐴

𝑎𝑞𝐴
· · · 𝑎𝑞1

WT
= 𝑁

[
𝑎†𝑝1
· · · 𝑎†𝑝𝐴

𝑎𝑞𝐴
· · · 𝑎𝑞1

]
+ 𝑎†𝑝1

𝑎𝑞1𝑁
[
𝑎†𝑝2
· · · 𝑎†𝑝𝐴

𝑎𝑞𝐴
· · · 𝑎𝑞2

]
− 𝑎†𝑝1

𝑎𝑞2𝑁
[
𝑎†𝑝2
· · · 𝑎†𝑝𝐴

𝑎𝑞𝐴
· · · 𝑎𝑞1

]
+ single contractions

+
(
𝑎†𝑝1

𝑎𝑞1𝑎
†
𝑝2
𝑎𝑞2 − 𝑎†𝑝1

𝑎𝑞2𝑎
†
𝑝2
𝑎𝑞1

)
𝑁 [· · ·] + double contractions

+ triple contractions + · · · + full contractions.

(2.29)

Notice that the process of removing the contraction from the normal-product results in an appropriate

phase change on the normal-product operator string. The resulting sum of operators assumes the

general form [2],

𝐴𝑀𝐵𝑁 =

𝑀+𝑁∑︁
𝑘=|𝑀−𝑁 |

𝐶 (𝑘) , (2.30)

where the lower bounds exist because we are not able to fully contract all indices unless 𝑀 = 𝑁 .

The power of Wick’s theorem is that we can take any many-body operator product and “decom-

pose” the product into a sum of normal-ordered products. In this expansion, we need only worry

about phases when permuting the operators in the normal-ordered string, because contributions

from the 𝛿 in the anticommutator have vanished according to the contractions. Additionally, when

computing an expectation value with this theorem, only full contractions survive by Equation 2.24.
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We may leverage Wick’s theorem to define the two-body density matrix. Analogously to

the one-body hole density matrix in Equation 2.23, the two-body hole density encode two-body

correlations in the reference state. We write,

𝜌𝑟𝑠𝑝𝑞 = ⟨Φ|𝑎†𝑟𝑎†𝑠𝑎𝑞𝑎𝑝 |Φ⟩
WT
= 𝜌𝑟 𝑝𝜌𝑠𝑞 − 𝜌𝑟𝑞𝜌𝑠𝑝, (2.31)

where we have used Wick’s theorem to further decompose the two-body operator string. Using

Wick’s theorem, we have shown that the two-body hole density matrix, for a single Slater deter-

minant reference state, can be reduced to a product of one-body density matrices. The three-body

density matrix factorizes analogously,

𝜌𝑠𝑡𝑢𝑝𝑞𝑟 = ⟨Φ|𝑎†𝑠𝑎†𝑡 𝑎†𝑢𝑎𝑟𝑎𝑞𝑎𝑝 |Φ⟩
WT
= 𝜌𝑠𝑝𝜌𝑡𝑞𝜌𝑢𝑟 − 𝜌𝑠𝑞𝜌𝑡 𝑝𝜌𝑢𝑟 + 𝜌𝑠𝑞𝜌𝑡𝑟𝜌𝑢𝑝

− 𝜌𝑠𝑟𝜌𝑡𝑞𝜌𝑢𝑝 − 𝜌𝑠𝑝𝜌𝑡𝑟𝜌𝑢𝑞 + 𝜌𝑠𝑟𝜌𝑡 𝑝𝜌𝑢𝑞 .

(2.32)

2.6 Correlated Reference States and Irreducible Density Matrices

In Chapter 2.5, we discussed the one-body and two-body density matrices for a single, uncor-

related Slater determinant reference state. For a correlated reference state, the density matrices

include irreducible terms which encode “pure” correlations in the reference state. In order to

define contractions with respect to a general reference state, Wick’s theorem must be augmented

with additional contractions that reflect the present correlations, using a formalism developed by

Kutzelnigg and Mukherjee [4] in the context of quantum chemistry.

The new contractions are given by the so-called irreducible density matrices of the reference

state, for reasons that will become clear soon. Following the notation of Hergert [1], we will denote

these irreducible density matrices with the symbol _. In the correlated reference state, the one-body

density matrix itself is irreducible:

⟨Φ|𝑎†𝑝𝑎𝑞 |Φ⟩ = _𝑞𝑝 = 𝜌𝑞𝑝 . (2.33)

The irreducible two-body density matrix is defined as:

_𝑟𝑠𝑝𝑞 = 𝜌𝑟𝑠𝑝𝑞 −
(
_𝑟 𝑝_𝑠𝑞 − _𝑟𝑞_𝑠𝑟

)
. (2.34)
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Comparison with Equation 2.34 shows that for an uncorrelated reference state, such as a single Slater

determinant, the irreducible two-body density matrix vanishes. In other words, _𝑖 𝑗 𝑘𝑙 represents

pure two-body correlation information, after contributions from independent particles have been

removed from the full two-body density matrix [1].

The irreducible three-body density matrix is similarly defined,

_𝑠𝑡𝑢𝑝𝑞𝑟 = 𝜌𝑠𝑡𝑢𝑝𝑞𝑟 − A(_𝑠𝑝_𝑡𝑢𝑞𝑟) − A(_𝑠𝑝_𝑡𝑞_𝑢𝑟) (2.35)

where A(·) represents all antisymmetric combinations of its argument (refer to [4, 5] for their

complete derivation). In this case, the three-body irreducible term is the pure three-body correlation,

after contributions from independent particles, as well as a correlated pair in presence of an

independent spectator, have been subtracted from the full three-body density matrix.

2.7 Normal-ordering the Two-body Hamiltonian

Consider a many-body vacuum Hamiltonian which consists of a one-body operator term,

corresponding to single-particle kinetic energy, and a two-body operator term,

𝐻 =
∑︁
𝑝𝑞

⟨𝑝 |𝑡 |𝑞⟩ 𝑎†𝑝𝑎𝑞 +
1
4

∑︁
𝑝𝑞𝑟𝑠

⟨𝑝𝑞 |𝑣 |𝑟𝑠⟩ 𝑎†𝑝𝑎†𝑞𝑎𝑠𝑎𝑟 , (2.36)

where the vacuum two-body coefficients ⟨𝑝𝑞 |𝑣 |𝑟𝑠⟩ are antisymmetrized. Wick’s theorem can be

applied to 𝐻 to extract the normal-ordered 𝐻𝑁 . We work in the eigenbasis of the one-body operator

and begin by applying Wick’s theorem to the one-body operator:

𝑎†𝑝𝑎𝑞
WT
= 𝑁

[
𝑎†𝑝𝑎𝑞

]
+ 𝑁

[
𝑎†𝑝𝑎𝑞

]
= 𝑁

[
𝑎†𝑝𝑎𝑞

]
+ 𝑛(𝑝)𝛿𝑝𝑞 . (2.37)

The Wick’s theorem two-body operator is written,

𝑎†𝑝𝑎
†
𝑞𝑎𝑠𝑎𝑟

WT
= 𝑁

[
𝑎†𝑝𝑎

†
𝑞𝑎𝑠𝑎𝑟

]
+

𝑁
[
𝑎†𝑝𝑎

†
𝑞𝑎𝑠𝑎𝑟

]
+ 𝑁

[
𝑎†𝑝𝑎

†
𝑞𝑎𝑠𝑎𝑟

]
+

𝑁
[
𝑎†𝑝𝑎

†
𝑞𝑎𝑠𝑎𝑟

]
+ 𝑁

[
𝑎†𝑝𝑎

†
𝑞𝑎𝑠𝑎𝑟

]
+

𝑁
[
𝑎†𝑝𝑎

†
𝑞𝑎𝑠𝑎𝑟

]
+ 𝑁

[
𝑎†𝑝𝑎

†
𝑞𝑎𝑠𝑎𝑟

]
,

(2.38)
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and evaluating the Wick contractions reveals the two-body dependence on the occupation structure

in the reference state,

𝑎†𝑝𝑎
†
𝑞𝑎𝑠𝑎𝑟

WT
= 𝑁

[
𝑎†𝑝𝑎

†
𝑞𝑎𝑠𝑎𝑟

]
− 𝑛(𝑝)𝛿𝑝𝑠𝑁

[
𝑎†𝑞𝑎𝑟

]
+ 𝑛(𝑝)𝛿𝑝𝑟𝑁

[
𝑎†𝑞𝑎𝑠

]
+ 𝑛(𝑞)𝛿𝑞𝑠𝑁

[
𝑎†𝑝𝑎𝑟

]
− 𝑛(𝑞)𝛿𝑞𝑟𝑁

[
𝑎†𝑝𝑎𝑠

]
+ 𝑛(𝑝)𝑛(𝑞)𝛿𝑝𝑟𝛿𝑞𝑠 − 𝑛(𝑝)𝑛(𝑞)𝛿𝑝𝑠𝛿𝑞𝑟 .

(2.39)

Note that the occupation factors 𝑛(𝑝) and 𝑛(𝑞) restrict the single particle indices to only occupied

states, or hole indices. Consequently, the summation indices in Equation 2.36 are also restricted

where relevant.

We proceed by collecting zero-, one-, and two-body terms into 0B, 1B, and 2B normal-ordered

operators which appear on the right-hand side of Wick’s theorem applied to the vacuum Hamiltonian

in Equation 2.36. Beginning with the 0B normal-ordered operator (fully contracted),

0B =
∑︁
𝑖

⟨𝑖 |𝑡 |𝑖⟩ + 1
2

∑︁
𝑖 𝑗

⟨𝑖 𝑗 |𝑣 |𝑖 𝑗⟩ ≡ 𝐸, (2.40)

where the sum runs over the occupied (hole) states. This term is referred to as the reference energy

𝐸 .

The 1B normal-ordered operator (one contraction) reads

1B =
∑︁
𝑝𝑞

⟨𝑝 |𝑡 |𝑞⟩ 𝑁
[
𝑎†𝑝𝑎𝑞

]
+ 1

4

∑︁
𝑖𝑝𝑞

𝑁
[
𝑎†𝑝𝑎𝑞

]
(⟨𝑖𝑝 |𝑣 |𝑖𝑞⟩ + ⟨𝑝𝑖 |𝑣 |𝑞𝑖⟩

− ⟨𝑖𝑝 |𝑣 |𝑞𝑖⟩ − ⟨𝑝𝑖 |𝑣 |𝑖𝑞⟩)

=
∑︁
𝑝𝑞

⟨𝑝 |𝑡 |𝑞⟩ 𝑁
[
𝑎†𝑝𝑎𝑞

]
+

∑︁
𝑖𝑝𝑞

𝑁
[
𝑎†𝑝𝑎𝑞

]
⟨𝑖𝑝 |𝑣 |𝑖𝑞⟩

≡
∑︁
𝑝𝑞

⟨𝑝 | 𝑓 |𝑞⟩ 𝑁
[
𝑎†𝑝𝑎𝑞

]
,

where the Fock operator 𝑓 contains the kinetic energy of the particle plus a mean-field contribution

from the interaction.
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The 2B normal-ordered operator is simply the last remaining two-body term which contains no

contractions,

2B =
1
4

∑︁
𝑝𝑞𝑟𝑠

⟨𝑝𝑞 |𝑣 |𝑟𝑠⟩ 𝑁
[
𝑎†𝑝𝑎

†
𝑞𝑎𝑠𝑎𝑟

]
. (2.41)

Finally, the normal-ordered two-body Hamiltonian reads

𝐻𝑁 = 𝐸 +
∑︁
𝑝𝑞

⟨𝑝 | 𝑓 |𝑞⟩ 𝑁
[
𝑎†𝑝𝑎𝑞

]
+ 1

4

∑︁
𝑝𝑞𝑟𝑠

⟨𝑝𝑞 |𝑣 |𝑟𝑠⟩ 𝑁
[
𝑎†𝑝𝑎

†
𝑞𝑎𝑠𝑎𝑟

]
(2.42)

Wick’s theorem shuffles operator contributions into terms of fewer-body character by contracting

with the density matrix of the independent particle system.

There are situations where we may want to reverse the normal-ordering process in order

to recover the true vacuum operators. To see how we can undo the normal-ordering of the

Hamiltonian (or any other operator), we compare coefficients in Equation 2.42 (the normal-ordered

Hamiltonian) and Equation 2.36 (the two-body vacuum Hamiltonian). Comparing coefficients

where vac corresponds to vacuum operators and NO corresponds to normal-ordered operators,

⟨𝑝𝑞 |𝑣 |𝑟𝑠⟩vac = ⟨𝑝𝑞 |𝑣 |𝑟𝑠⟩NO

⟨𝑝 |𝑡 |𝑞⟩vac = ⟨𝑝 | 𝑓 |𝑞⟩NO −
∑︁
𝑖

⟨𝑝𝑖 |𝑣 |𝑞𝑖⟩vac

𝐻0 = 𝐸 −
∑︁
𝑖

⟨𝑖 |𝑡 |𝑖⟩vac − 1
4

∑︁
𝑖 𝑗

⟨𝑖 𝑗 |𝑣 |𝑖 𝑗⟩vac ,

(2.43)

where the 𝐻0 is necessary to recover information lost due to truncation of higher-body operators

generated by the normal-ordering process. In the case where no operators were truncated in the

normal-ordered operator, 𝐻0 vanishes by Equation 2.40. If normal-ordered contributions which

would have been shuffled into the zero-body term in Equation 2.40 are instead truncated off, then the

unnormal-ordered 𝐻0 piece will not vanish, and must be included in the total vacuum Hamiltonian,

written

𝐻vac = 𝐻0 + 𝐻vac
1B + 𝐻

vac
2B . (2.44)

This procedure is useful in the context of IMSRG-evolved Hamiltonians (Chapter 3.3), where

we may wish to use vacuum coefficients obtained from the unnormal-ordered evolved Hamiltonian

as inputs for exact methods (e.g. Full Configuration Interaction calculations in Chapter 2.10).
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2.8 Density Matrix Normal-ordering

When generally correlated reference states are introduced to the normal-ordering, we must mod-

ify the normal-ordering procedure to account for occupations which are fractional; in a correlated

reference, the occupation factor in Equations 2.27 and 2.28 is no longer an integer, in general.

Normal-ordering with respect to a general density matrix is as simple as inserting the full density

matrices, where appropriate, into the calculation of the normal-ordered operator in Equations 2.40,

2.41, and 2.41. Summations over hole indices must then be replaced by sums over the full single-

particle basis instead, e.g. ∑︁
𝑖

⟨𝑝𝑖 |𝑣 |𝑞𝑖⟩vac −→
∑︁
𝑟𝑠

⟨𝑝𝑟 |𝑣 |𝑞𝑠⟩vac 𝜌𝑠𝑟∑︁
𝑖

⟨𝑖 |𝑡 |𝑖⟩vac −→
∑︁
𝑟𝑠

⟨𝑝 |𝑡 |𝑞⟩vac 𝜌𝑞𝑝

1
4

∑︁
𝑖 𝑗

⟨𝑖 𝑗 |𝑣 |𝑖 𝑗⟩vac −→ 1
4

∑︁
𝑝𝑞𝑟𝑠

⟨𝑝𝑞 |𝑣 |𝑟𝑠⟩vac 𝜌𝑟𝑠𝑝𝑞 .

(2.45)

2.9 Slater Determinant Occupation Number Representation

A common strategy for writing and computing Slater determinants, particularly in code, is the

occupation number representation. In this scheme, a Slater determinant with number of single

states 𝑁 is written as a string of 1s and 0s of length 𝑁 , where 1 indicates an occupied single particle

state and 0 an unoccupied single particle state. For example, a Fermi vacuum Slater determinant

for 𝑁 = 8 states and 𝐴 = 4 particles states can be written as

|Φ0⟩ = |11110000⟩ , (2.46)

where the ordering of the bit digits is convention, but must be consistent within a given application.

In this scheme, the application of creation/annihilation operators replace 0s with 1s and 1s with

0s where appropriate, and the usual rules for antisymmetric exchanges of indices still apply. For

example, we can apply an excitation operator �̂�5
4 = 𝑎

†
5𝑎4 which excites the particle occupied in

single particle index 𝑖 = 4 into the single particle index 𝑎 = 5 above the Fermi surface:

�̂�5
4 |11110000⟩ = − |11101000⟩ . (2.47)
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The Slater determinants in this scheme are still orthonormal, meaning that

⟨11110000|11110000⟩ = 1

⟨11110000|�̂�5
4 |11110000⟩⟩ = − ⟨11110000|11101000⟩ = 0.

(2.48)

2.10 Full Configuration Interaction Theory to Solve Model Hamiltonians

Sometimes we require an exact method in order to validate results from approximate models.

The exact method we use often in this dissertation is called Full Configuration Interaction (FCI)

theory. The defining feature of an FCI calculation is that the Hamiltonian is constructed in the full

basis of Slater determinant configurations of particles [3]. In the occupation number representation,

we proceed by constructing the Hamiltonian matrix in the full basis of configurations of occupation

strings relative to a “ground state” configuration such as the occupation string in Equation 2.46.

After the matrix is built, we can apply a diagonalization method to extract the energy spectrum, or

other target observables.

This method is prohibitive for practical problems in nuclear theory due to the dimensionality of

the model space. For a model with 𝐴 particles in 𝑁 possible single particle states, the total number

of Slater determinant configurations is given by [3](
𝑁

𝐴

)
=

𝑁!
(𝑁 − 𝐴)!𝐴!

, (2.49)

This number quickly explodes with the number of possible single particle states, which may be on

the order of 100s or 1000s for typical medium and heavy nuclei.

For a toy model, such as the pairing model (see Chapter 4.1), the model space may be so

simplified that the dimensionality is not an issue. In the pairing model, we can typically keep our

particle number small (on the order of 10 or fewer), and fill half the number of energy levels, in

order to extract the physics we require using our theoretical methods.

An FCI calculation involving a basis of Slater determinant configurations is performed over

several steps:

1. Define the number of single particle states 𝑛 and number of particles 𝑁
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2. Generate
( 𝑛
𝑁

)
number of Slater determinants in the occupation number representation as the

basis (see Chapter 2.9)

3. Compute
( 𝑛
𝑁

)
×

( 𝑛
𝑁

)
square matrix H with elements given by ⟨Φ𝑖 |𝐻 |Φ 𝑗 ⟩, where Φ𝑖 is the 𝑖-th

Slater determinant in the basis (typically ordered by increasing energy with respect to the

ground state, although this ordering may not be known a priori)

4. Diagonalize H to extract the energy spectrum

Since we have access to the eigenstates after the diagonalization, we can in principle compute any

other observable of interest in this framework. When calculations are feasible, the energy spectrum

extracted from FCI is the ultimate benchmark for validating results from other techniques, which

will be presented in later sections.
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CHAPTER 3

IN-MEDIUM SIMILARITY RENORMALIZATION GROUP

3.1 Introduction

In this chapter, we will present the conceptual and mathematical framework for the in-medium

similarity renormalization group (IMSRG), which is the main focus for this body of work. We

begin by presenting the idea behind Similarity Renormalization Group methods.

3.2 Similarity Renormalization Group

The SRG was conceived by Głazek and Wilson [1] for applications in light-front quantum field

theory, and independently developed by Wegner [7] for applications in condensed matter systems.

The SRG is constructed such that the Hamiltonian matrix, expressed in an appropriate basis, is

driven to a band-diagonal form via a continuous unitary transformation that suppresses off-diagonal

elements. In a basis like the harmonic oscillator, these off-diagonal elements encode interactions

between states of increasing difference in energy. This process is demonstrated schematically in

Figure 3.1. The suppression scales 𝑠0, 𝑠1, 𝑠2 represent characteristic relative momentum “bands”

which limit relative momentum according to 𝑠 = _1/4, where _ is in units fm−1. The scale parameter

𝑠 parameterizes the cutoff Λ in the 𝜒EFT theory (see Chapter 4.2). As 𝑠 increases, high momentum

modes are decoupled from low momentum modes.

The flowing SRG Hamiltonian is expressed as

𝐻 (𝑠) = 𝑈 (𝑠)𝐻 (𝑠 = 0)𝑈†(𝑠), (3.1)

where𝑈 (𝑠) describes the evolution of the initial, unevolved Hamiltonian to the current value of the

continuous flow parameter 𝑠.

𝑑𝐻 (𝑠)
𝑑𝑠

=
𝑑𝑈 (𝑠)
𝑑𝑠

𝐻 (0)𝑈†(𝑠) +𝑈 (𝑠)𝐻 (0) 𝑑𝑈
†(𝑠)
𝑑𝑠

=
𝑑𝑈 (𝑠)
𝑑𝑠

𝑈†(𝑠)𝐻 (𝑠) + 𝐻 (𝑠)𝑈 (𝑠) 𝑑𝑈
†(𝑠)
𝑑𝑠

.

(3.2)
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𝑠1
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Figure 3.1 Schematic diagram of 𝑁𝑁 scattering potential, in a momentum basis, showing how modes of
increasing relative momentum (energy) are suppressed faster than low momentum modes. Figure adapted
from Chapter 10 of [4].

Next, we define the 𝑠-dependent anti-Hermitian generator [(𝑠), which is chosen in a way to “gen-

erate” the transformation we want to achieve (i.e. suppression of off-diagonal elements according

to chosen decoupling strategy). The generator [(𝑠) is defined as [3, 2, 4]

[(𝑠) = 𝑑𝑈 (𝑠)
𝑑𝑠

𝑈†(𝑠) = −[†(𝑠). (3.3)

Inserting Equation 3.3 into Equation 3.2, we naturally arrive at the commutator expression for the

operator flow equation:
𝑑𝐻 (𝑠)
𝑑𝑠

= [[(𝑠), 𝐻 (𝑠)] . (3.4)

3.3 IMSRG Formalism

The computational cost of the SRG, with matrices, in Equation 3.4 scales exponentially with the

many-body basis dimension. The IMSRG approach moves this description “in-medium” by shifting

the flowing Hamiltonian to a normal-ordered operator basis (Chapter 2), instead of the many-body

basis [3]. The flow is implemented at the level of operators, using strings of annhilation and

creation operators that are normal-ordered with respect to an appropriate reference state, defining
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our operator basis. We will see that the IMSRG flow equations are polynomially scaling with

single particle basis size. Practically, the purpose of the IMSRG is to decouple a target state from

excitations relative to that state, by suppressing the interaction terms in the normal-ordered operator

expansion of the Hamiltonian.

We start from Equation 3.4, and use the second quantization techniques discussed in Chapter

2.4 to derive the coupled flow equations associated with the IMSRG evolution. We assume that the

operator 𝐻 (𝑠) is in normal-ordered form with respect to a chosen reference state (which we might

choose to approximate the Hamiltonian ground state); the normal-ordered two-body Hamiltonian

is written,

𝐻IMSRG(𝑠) = 𝐸 (𝑠) +
∑︁
𝑝𝑞

𝑓𝑝𝑞 (𝑠)𝑁
[
𝑎†𝑝𝑎𝑞

]
+ 1

4

∑︁
𝑝𝑞𝑟𝑠

Γ𝑝𝑞𝑟𝑠 (𝑠)𝑁
[
𝑎†𝑝𝑎

†
𝑞𝑎𝑠𝑎𝑟

]
, (3.5)

where the 𝑓𝑝𝑞 and Γ𝑝𝑞𝑟𝑠 operator coefficients are derived from the vacuum representation of the

Hamiltonian through the normal ordering procedure, and 𝐸 represents the reference energy, which

encodes the expectation value of the vacuum Hamiltonian in the reference state (see Chapter 2.7).

We assume that Γ𝑝𝑞𝑟𝑠 is antisymmetrized, i.e.,

Γ𝑝𝑞𝑟𝑠 = −Γ𝑞𝑝𝑟𝑠 = −Γ𝑝𝑞𝑠𝑟 = Γ𝑞𝑝𝑠𝑟 . (3.6)

Note that all operator coefficients in the IMSRG Hamiltonian (3.5) depend on the flow parameters 𝑠.

In this way, the IMSRG evolves the Hamiltonian within the chosen operator basis toward a desired

form which is defined by a chosen decoupling scheme. Evaluation of the commutators in Equation

3.4 induces higher-body terms that are computationally expensive to calculate. In general, we need

to truncate the operator basis at a particular level. For example, keeping up to two-body operators

throughout the flow defines the IMSRG(2) truncation.

In the IMSRG(2) truncation, the anti-Hermitian generator [(𝑠) has the form,

[(𝑠) =
∑︁
𝑝𝑞

[𝑝𝑞 (𝑠)𝑁
[
𝑎†𝑝𝑎𝑞

]
+ 1

4

∑︁
𝑝𝑞𝑟𝑠

[𝑝𝑞𝑟𝑠 (𝑠)𝑁
[
𝑎†𝑝𝑎

†
𝑞𝑎𝑠𝑎𝑟

]
. (3.7)

To proceed, we recall the general form of a product of operators from Equation 2.30. Each product

in the commutator of Equation 3.4 generates new operators up to 4-body; however, the symmetry
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in the commutator eliminates the four-body operators. Again, working in the IMSRG(2) truncation

means we keep only up to two-body operators generated by the commutators.

As a demonstration, we will derive the term associated with
[
𝑁

[
𝑎
†
𝑝1𝑎
†
𝑞1𝑎𝑠1𝑎𝑟1

]
, 𝑁

[
𝑎
†
𝑝2𝑎𝑞2

] ]
,

where we have added the sub-indices 1 and 2 to differentiate between the source of the operator

(Hamiltonian versus generator). The logic we use here can be extended to each additional commu-

tator term to completely derive the full IMSRG flow equations. We start with the definition of the

commutator, [
𝑁

[
𝑎†𝑝1

𝑎†𝑞1
𝑎𝑠1𝑎𝑟1

]
, 𝑁

[
𝑎†𝑝2

𝑎𝑞2

] ]
=𝑁

[
𝑎†𝑝1

𝑎†𝑞1
𝑎𝑠1𝑎𝑟1

]
𝑁

[
𝑎†𝑝2

𝑎𝑞2

]
− 𝑁

[
𝑎†𝑝2

𝑎𝑞2

]
𝑁

[
𝑎†𝑝1

𝑎†𝑞1
𝑎𝑠1𝑎𝑟1

] (3.8)

We may apply Wick’s theorem (refer Shavitt and Bartlett [6], Equation 3.194, as well as Chapter

2.5) to a product of normal-ordered operators, which operates similarly to application of Wick’s

theorem to a vacuum operator. Using the first term as an example (dropping the summations
∑

for

brevity),

𝑁
[
𝑎†𝑝1

𝑎†𝑞1
𝑎𝑠1𝑎𝑟1

]
𝑁

[
𝑎†𝑝2

𝑎𝑞2

] WT
= 𝑁

[
𝑎†𝑝1

𝑎†𝑞1
𝑎𝑠1𝑎𝑟1𝑎

†
𝑝2
𝑎𝑞2

]
+ 𝑁

[
𝑎†𝑝1

𝑎†𝑞1
𝑎𝑠1𝑎𝑟1𝑎

†
𝑝2
𝑎𝑞2

]
+ 𝑁

[
𝑎†𝑝1

𝑎†𝑞1
𝑎𝑠1𝑎𝑟1𝑎

†
𝑝2
𝑎𝑞2

]
+ 𝑁

[
𝑎†𝑝1

𝑎†𝑞1
𝑎𝑠1𝑎𝑟1𝑎

†
𝑝2
𝑎𝑞2

]
+ 𝑁

[
𝑎†𝑝1

𝑎†𝑞1
𝑎𝑠1𝑎𝑟1𝑎

†
𝑝2
𝑎𝑞2

]
+ 𝑁

[
𝑎†𝑝1

𝑎†𝑞1
𝑎𝑠1𝑎𝑟1𝑎

†
𝑝2
𝑎𝑞2

]
+ 𝑁

[
𝑎†𝑝1

𝑎†𝑞1
𝑎𝑠1𝑎𝑟1𝑎

†
𝑝2
𝑎𝑞2

]
+ 𝑁

[
𝑎†𝑝1

𝑎†𝑞1
𝑎𝑠1𝑎𝑟1𝑎

†
𝑝2
𝑎𝑞2

]
+ 𝑁

[
𝑎†𝑝1

𝑎†𝑞1
𝑎𝑠1𝑎𝑟1𝑎

†
𝑝2
𝑎𝑞2

]
(3.9)

Contractions between the operators inside a particular normal-ordered operator string on the left-

hand side of Equation 3.9 are already accounted for by the initial normal ordering, hence only

contractions between operators from string 1 and 2 survive.

Simplifying Equation 3.9 further using the Wick contractions in Equations 2.22 and 2.25, we
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find

𝑁
[
𝑎†𝑝1

𝑎†𝑞1
𝑎𝑠1𝑎𝑟1

]
𝑁

[
𝑎†𝑝2

𝑎𝑞2

]
= 𝑁

[
𝑎†𝑝1

𝑎†𝑞1
𝑎𝑠1𝑎𝑟1𝑎

†
𝑝2
𝑎𝑞2

]
+ 𝜌𝑝1𝑞2𝑁

[
𝑎†𝑞1

𝑎†𝑝2
𝑎𝑠1𝑎𝑟1

]
− 𝜌𝑞1𝑞2𝑁

[
𝑎†𝑝1

𝑎†𝑝2
𝑎𝑠1𝑎𝑟1

]
− (𝛿𝑠1𝑝2 − 𝜌𝑠1𝑝2)𝑁

[
𝑎†𝑝1

𝑎†𝑞1
𝑎𝑟1𝑎𝑞2

]
+ (𝛿𝑟1𝑝2 − 𝜌𝑟1𝑝2)𝑁

[
𝑎†𝑝1

𝑎†𝑞1
𝑎𝑠1𝑎𝑞2

]
− 𝜌𝑝1𝑞2 (𝛿𝑠1𝑝2 − 𝜌𝑠1𝑝2)𝑁

[
𝑎†𝑞1

𝑎𝑟1

]
+ 𝜌𝑝1𝑞2 (𝛿𝑟1𝑝2 − 𝜌𝑟1𝑝2)𝑁

[
𝑎†𝑞1

𝑎𝑠1

]
+ 𝜌𝑞1𝑞2 (𝛿𝑠1𝑝2 − 𝜌𝑠1𝑝2)𝑁

[
𝑎†𝑝1

𝑎𝑟1

]
− 𝜌𝑞1𝑞2 (𝛿𝑟1𝑝2 − 𝜌𝑟1𝑝2)𝑁

[
𝑎†𝑝1

𝑎𝑠1

]
.

(3.10)

The same procedure applied to the product 𝑁
[
𝑎
†
𝑝2𝑎𝑞2

]
𝑁

[
𝑎
†
𝑝1𝑎
†
𝑞1𝑎𝑠1𝑎𝑟1

]
yields a similar result,

𝑁
[
𝑎†𝑝2

𝑎𝑞2

]
𝑁

[
𝑎†𝑝1

𝑎†𝑞1
𝑎𝑠1𝑎𝑟1

]
= 𝑁

[
𝑎†𝑝2

𝑎𝑞2𝑎
†
𝑝1
𝑎†𝑞1

𝑎𝑠1𝑎𝑟1

]
− 𝜌𝑝2𝑟1𝑁

[
𝑎†𝑝1

𝑎†𝑞1
𝑎𝑠1𝑎𝑞2

]
+ 𝜌𝑝2𝑠1𝑁

[
𝑎†𝑝1

𝑎†𝑞1
𝑎𝑟1𝑎𝑞2

]
− (𝛿𝑞2𝑝1 − 𝜌𝑞2𝑝1)𝑁

[
𝑎†𝑞1

𝑎†𝑝2
𝑎𝑠1𝑎𝑟1

]
+ (𝛿𝑞2𝑞1 − 𝜌𝑞2𝑞1)𝑁

[
𝑎†𝑝1

𝑎†𝑝2
𝑎𝑠1𝑎𝑟1

]
− 𝜌𝑝2𝑠1 (𝛿𝑞2𝑝1 − 𝜌𝑞2𝑝1)𝑁

[
𝑎†𝑞1

𝑎𝑟1

]
+ 𝜌𝑝2𝑟1 (𝛿𝑞2𝑝1 − 𝜌𝑞2𝑝1)𝑁

[
𝑎†𝑞1

𝑎𝑠1

]
+ 𝜌𝑝2𝑠1 (𝛿𝑞2𝑞1 − 𝜌𝑞2𝑞1)𝑁

[
𝑎†𝑝1

𝑎𝑟1

]
− 𝜌𝑝2𝑟1 (𝛿𝑞2𝑞1 − 𝜌𝑞2𝑞1)𝑁

[
𝑎†𝑝1

𝑎𝑠1

]
,

(3.11)

where we have exchanged operators inside the normal-product to match Equation 3.10. At this

point, the terms which vanish from the commutator are straightforward to recognize—the three-

body normal-product vanishes, as well as any term which only includes the one-body density matrix

𝜌. The commutator becomes[
𝑁

[
𝑎†𝑝1

𝑎†𝑞1
𝑎𝑠1𝑎𝑟1

]
, 𝑁

[
𝑎†𝑝2

𝑎𝑞2

] ]
=

− 𝛿𝑠1𝑝2𝑁
[
𝑎†𝑝1

𝑎†𝑞1
𝑎𝑟1𝑎𝑞2

]
+ 𝛿𝑟1𝑞2𝑁

[
𝑎†𝑝1

𝑎†𝑞1
𝑎𝑠1𝑎𝑞2

]
+ 𝛿𝑞2𝑝1𝑁

[
𝑎†𝑞1

𝑎†𝑝2
𝑎𝑠1𝑎𝑟1

]
− 𝛿𝑞2𝑞1𝑁

[
𝑎†𝑝1

𝑎†𝑝2
𝑎𝑠1𝑎𝑟1

]
+

(
−𝜌𝑝1𝑞2𝛿𝑠1𝑝2 + 𝜌𝑝2𝑠1𝛿𝑞2𝑝1

)
𝑁

[
𝑎†𝑞1

𝑎𝑟1

]
+

(
𝜌𝑝1𝑞2𝛿𝑟1𝑝2 − 𝜌𝑝2𝑟1𝛿𝑞2𝑝1

)
𝑁

[
𝑎†𝑞1

𝑎𝑠1

]
+

(
𝜌𝑞1𝑞2𝛿𝑠1𝑝2 − 𝜌𝑝2𝑠1𝛿𝑞2𝑞1

)
𝑁

[
𝑎†𝑝1

𝑎𝑟1

]
+

(
−𝜌𝑞1𝑞2𝛿𝑟1𝑝2 + 𝜌𝑝2𝑟1𝛿𝑞2𝑞1

)
𝑁

[
𝑎†𝑝1

𝑎𝑠1

]
.

(3.12)

Now we will re-establish the summation
∑

over all single particle states for each operator in the

commutator. Since this sum covers all single particle indices for every operator in each normal-
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product, we can rename and manipulate indices to our advantage. Inside the normal-product,

the label of a particular operator is “free” because the indices span the full space. Introducing

the appropriate matrix elements associated with each operator reveals that we can combine each

term into an associated many-body operator, multiplied by a corresponding matrix element (or

expression). Applying this logic,[
𝐴(2) , 𝐵(1)

]
=

1
4

∑︁
𝑝1𝑞1𝑟1𝑠1𝑝2𝑞2

𝐴𝑝1𝑞1𝑟1𝑠1𝐵𝑝2𝑞2

(
−𝛿𝑠1𝑝2𝑁

[
𝑎†𝑝1

𝑎†𝑞1
𝑎𝑟1𝑎𝑞2

]
+ 𝛿𝑟1𝑝2𝑁

[
𝑎†𝑝1

𝑎†𝑞1
𝑎𝑠1𝑎𝑞2

]
+ 𝛿𝑞2𝑝1𝑁

[
𝑎†𝑞1

𝑎†𝑝2
𝑎𝑠1𝑎𝑟1

]
− 𝛿𝑞2𝑞1𝑁

[
𝑎†𝑝1

𝑎†𝑝2
𝑎𝑠1𝑎𝑟1

]
+

(
−𝜌𝑝1𝑞2𝛿𝑠1𝑝2 + 𝜌𝑝2𝑠1𝛿𝑞2𝑝1

)
𝑁

[
𝑎†𝑞1

𝑎𝑟1

]
+

(
𝜌𝑝1𝑞2𝛿𝑟1𝑞2 − 𝜌𝑝2𝑟1𝛿𝑞2𝑝1

)
𝑁

[
𝑎†𝑞1

𝑎𝑠1

]
+

(
𝜌𝑞1𝑞2𝛿𝑠1𝑝2 − 𝜌𝑝2𝑠1𝛿𝑞2𝑞1

)
𝑁

[
𝑎†𝑝1

𝑎𝑟1

]
+

(
−𝜌𝑞1𝑞2𝛿𝑟1𝑝2 + 𝜌𝑝2𝑟1𝛿𝑞2𝑞1

)
𝑁

[
𝑎†𝑝1

𝑎𝑠1

] )
.

(3.13)

For simplicity, we will continue in the eigenbasis of the one-body density matrix such that,

𝜌𝑝𝑞 = 𝑛𝑝𝛿𝑝𝑞, (3.14)

where the factor 𝑛𝑝 is 0 or 1 when the single particle state 𝑎 is unoccupied or occupied, respectively,

in the reference [3]. Note that working in this basis, we assume that the reference state is a single

Slater determinant.

We push the associated matrix element 𝐴𝑝1𝑞1𝑟1𝑠1𝐵𝑝2𝑞2 through each term in the sum, carefully
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removing index dependence that is cancelled by a particular 𝛿,[
𝐴(2) , 𝐵(1)

]
=

− 1
4

∑︁
𝑝1𝑞1𝑟1𝑢𝑞2

𝐴𝑝1𝑞1𝑟1𝑢𝐵𝑢𝑞2𝑁
[
𝑎†𝑝1

𝑎†𝑞1
𝑎𝑟1𝑎𝑞2

]
+ 1

4

∑︁
𝑝1𝑞1𝑢𝑠1𝑞2

𝐴𝑝1𝑞1𝑢𝑠1𝐵𝑢𝑞2𝑁
[
𝑎†𝑝1

𝑎†𝑞1
𝑎𝑠1𝑎𝑞2

]
+ 1

4

∑︁
𝑞1𝑟1𝑠1𝑝2𝑢

𝐴𝑢𝑞1𝑟1𝑠1𝐵𝑝2𝑢𝑁
[
𝑎†𝑞1

𝑎†𝑝2
𝑎𝑠1𝑎𝑟1

]
− 1

4

∑︁
𝑝1𝑟1𝑠1𝑝2𝑢

𝐴𝑝1𝑢𝑟1𝑠1𝐵𝑝2𝑢𝑁
[
𝑎†𝑝1

𝑎†𝑝2
𝑎𝑠1𝑎𝑟1

]
+ 1

4

∑︁
𝑞1𝑟1𝑢𝑣

𝐴𝑣𝑞1𝑟1𝑢𝐵𝑢𝑣 (−𝑛𝑣 + 𝑛𝑢) 𝑁
[
𝑎†𝑞1

𝑎𝑟1

]
+ 1

4

∑︁
𝑞1𝑠1𝑢𝑣

𝐴𝑣𝑞1𝑢𝑠1𝐵𝑢𝑣 (𝑛𝑣 − 𝑛𝑢) 𝑁
[
𝑎†𝑞1

𝑎𝑠1

]
+ 1

4

∑︁
𝑝1𝑟1𝑢𝑣

𝐴𝑝1𝑣𝑟1𝑢𝐵𝑢𝑣 (𝑛𝑣 − 𝑛𝑢) 𝑁
[
𝑎†𝑝1

𝑎𝑟1

]
+ 1

4

∑︁
𝑝1𝑠1𝑢𝑣

𝐴𝑝1𝑢𝑣𝑠1𝐵𝑢𝑣 (−𝑛𝑣 + 𝑛𝑢) 𝑁
[
𝑎†𝑝1

𝑎𝑠1

]
,

(3.15)

where the new summation indices 𝑢, 𝑣 result from the associated 𝛿 restrictions. The four one-body

operator terms in Equation 3.15 are equivalent up to a sign, and the associated indices may be

permuted in a way to combine all four terms into a single one-body operator term that reads[
𝐴(2) , 𝐵(1)

] (1)
=

∑︁
𝑝𝑞𝑢𝑣

𝐴𝑣𝑝𝑢𝑞𝐵𝑢𝑣 (𝑛𝑣 − 𝑛𝑏) 𝑁
[
𝑎†𝑝𝑎𝑞

]
. (3.16)

The four two-body terms can be rearranged into a single two-body operator with a coefficient that

consists of a sum over permuted matrix elements, i.e.[
𝐴(2) , 𝐵(1)

] (2)
=

1
4

∑︁
𝑝𝑞𝑟𝑠𝑢

𝑁
[
𝑎†𝑝𝑎

†
𝑞𝑎𝑠𝑎𝑟

]
×

(
𝐴𝑝𝑞𝑟𝑢𝐵𝑢𝑠 + 𝐴𝑝𝑞𝑢𝑠𝐵𝑢𝑟

−𝐴𝑢𝑞𝑟𝑠𝐵𝑝𝑢 − 𝐴𝑝𝑢𝑟𝑠𝐵𝑞𝑢

)
=

1
4

∑︁
𝑝𝑞𝑟𝑠𝑢

𝑁
[
𝑎†𝑝𝑎

†
𝑞𝑎𝑠𝑎𝑟

]
×

{
1 − 𝑃𝑟𝑠)𝐴𝑝𝑞𝑢𝑠𝐵𝑢𝑟 − (1 − 𝑃𝑝𝑞)𝐴𝑢𝑞𝑟𝑠𝐵𝑝𝑢

}
(3.17)

Here, the operator 𝑃𝑝𝑞 exchanges the indices 𝑝, 𝑞. We have arrived at the final result for just

one commutator that appears in the IMSRG(2) flow equations, with seemingly Herculean effort.
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Computing additional commutators requires similar, or greater, effort. Luckily, the fundamental

commutators which can be used to compute the remaining terms in the flow equation commutator

are catalogued in Appendix A of Hergert et al. [3], and tools are now available that can automate

these derivations. The zero-, one-, and two-body terms that are produced by the commutators

can now be collected into separate, but coupled, flow equations for the reference energy 𝐸 , the

one-body operator coefficients 𝑓 , and the two-body operator coefficients Γ. The resulting system

of IMSRG(2) flow equations reads[3]

𝑑𝐸

𝑑𝑠
=
∑︁
𝑝𝑞

(𝑛𝑝 − 𝑛𝑞)[𝑝𝑞 𝑓𝑞𝑝

+ 1
2

∑︁
𝑝𝑞𝑟𝑠

[𝑝𝑞𝑟𝑠Γ𝑟𝑠𝑝𝑞𝑛𝑝𝑛𝑞 �̄�𝑟 �̄�𝑠

𝑑𝑓𝑝𝑞

𝑑𝑠
=
∑︁
𝑟

(1 + 𝑃𝑝𝑞)[𝑝𝑟 𝑓𝑟𝑞

+
∑︁
𝑟𝑠

(𝑛𝑟 − 𝑛𝑠) ([𝑟𝑠Γ𝑠𝑝𝑟𝑞 − 𝑓𝑟𝑠[𝑠𝑝𝑟𝑞)

+ 1
2

∑︁
𝑟𝑠𝑡

(𝑛𝑟𝑛𝑠�̄�𝑡 + �̄�𝑟 �̄�𝑠𝑛𝑡) (1 + 𝑃𝑝𝑞)[𝑡 𝑝𝑟𝑠Γ𝑟𝑠𝑡𝑞

𝑑Γ𝑝𝑞𝑟𝑠

𝑑𝑠
=
∑︁
𝑡

{(1 − 𝑃𝑝𝑞) ([𝑝𝑡Γ𝑡𝑞𝑟𝑠 − 𝑓𝑝𝑡[𝑡𝑞𝑟𝑠

− (1 − 𝑃𝑟𝑠) (Γ𝑝𝑞𝑡𝑠[𝑡𝑟 − [𝑝𝑞𝑡𝑠 𝑓𝑡𝑟))}

+ 1
2

∑︁
𝑡𝑢

(1 − 𝑛𝑡 − 𝑛𝑢) ([𝑝𝑞𝑡𝑢Γ𝑡𝑢𝑟𝑠 − Γ𝑝𝑞𝑡𝑢[𝑡𝑢𝑟𝑠)

−
∑︁
𝑡𝑢

(𝑛𝑡 − 𝑛𝑢) (1 − 𝑃𝑝𝑞) (1 − 𝑃𝑟𝑠)[𝑢𝑞𝑡𝑠Γ𝑡 𝑝𝑢𝑟 ,

(3.18)

where indices run over the full single-particle basis. Note that the occupation numbers 𝑛𝑝 do not

depend on 𝑠 because the reference state is held fixed during the evolution.

Since we must loop over all operator coefficients for each flow, the computational effort for

implementing the IMSRG(2) evolution naively scales like 𝑂 (𝑁6) where 𝑁 is the number of single

particle states. For Slater determinant references and certain types of IMSRG generators, we

can leverage the partitioning of the single-particle basis into particle and hole states to achieve

an 𝑂 (𝑁2
ℎ
𝑁4

𝑝) scaling akin to the Coupled Cluster method with Singles and Doubles excitations
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Figure 3.2 Schematic illustration of the evolving structure of the IMSRG(2) Hamiltonian. The reference
state |Φ⟩ is completely decoupled from 1p-1h and 2p-2h excitations, |Φ𝑝

ℎ
⟩ and |Φ𝑝𝑝′

ℎℎ′ ⟩ as a result of the flow.
Figure adapted from Hergert et al. [3].

(CCSD), which aims to describe a comparable amount of many-body correlations [3].

3.4 Generators for the IMSRG

The IMSRG generator [ is an anti-Hermitian operator that we tailor in to implement a particular

decoupling scheme and implicitly drive the Hamiltonian matrix toward its desired form. To this

end, we need to identify the “off-diagonal” parts of the Hamiltonian that we would like to suppress

through the flow.

3.4.1 Choice of Decoupling Scheme

Here, we adopt the minimal decoupling scheme, in which we want to decouple a single eigenstate

— usually the ground state — from the rest of the many-body Hamiltonian matrix [3]. Figure 3.2

schematically displays the structure of initial and evolved Hamiltonian in the Ap-Ah basis of

excitations relative to a reference state |Φ⟩. In this scheme, the off-diagonal matrix elements of the

evolving Hamiltonian that are targeted for suppression read [3]

⟨Φ|𝐻 (𝑠) |Φ𝑎
𝑖 ⟩ = 𝑓𝑎𝑖 (𝑠)

⟨Φ|𝐻 (𝑠) |Φ𝑎𝑏
𝑖 𝑗 ⟩ = Γ𝑎𝑏𝑖 𝑗 (𝑠),

(3.19)
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and the normal-ordered off-diagonal Hamiltonian is constructed from these coefficients in the usual

way [3],

𝐻od(𝑠) =
∑︁
𝑎𝑖

𝑓𝑎𝑖 (𝑠)𝑁
[
𝑎†𝑎𝑎𝑖

]
+ 1

4

∑︁
𝑎𝑏𝑖 𝑗

Γ𝑎𝑏𝑖 𝑗 (𝑠)𝑁
[
𝑎†𝑎𝑎

†
𝑏
𝑎 𝑗𝑎𝑖

]
+ 𝐻.𝑐.. (3.20)

This definition must be generalized slightly in if we work with a general correlated reference state

in the multi-reference IMSRG (MR-IMSRG, see Appendix B), or with a reference state ensemble

(Chapter 6).

3.4.2 White Generator

Using the decoupling scheme and definition of the off-diagonal Hamiltonian from the previous

section, we can construct a class of generators that are inspired by the work of Steven White [8].

They are defined as [3],

[W(𝑠) =
∑︁
𝑎𝑖

𝑓𝑎𝑖 (𝑠)
Δ𝑎𝑖 (𝑠)

𝑁
[
𝑎†𝑎𝑎𝑖

]
+ 1

4

∑︁
𝑎𝑏𝑖 𝑗

Γ𝑎𝑏𝑖 𝑗 (𝑠)
Δ𝑎𝑏𝑖 𝑗 (𝑠)

𝑁

[
𝑎†𝑎𝑎

†
𝑏
𝑎 𝑗𝑎𝑖

]
− 𝐻.𝑐.. (3.21)

The anti-Hermiticity enters from the energy denominators Δ, which are inspired by the Epstein-

Nesbet (EN) and Møller-Plesset (MP) versions of many-body perturbation theory. The EN denom-

inators read

Δ
(EN)
𝑎𝑖

= 𝑓𝑎 − 𝑓𝑖 − Γ𝑎𝑖𝑎𝑖

Δ
(EN)
𝑖𝑎

= 𝑓𝑖 − 𝑓𝑎 + Γ𝑎𝑖𝑎𝑖

Δ
(EN)
𝑎𝑏𝑖 𝑗

= 𝑓𝑎 + 𝑓𝑏 − 𝑓𝑖 − 𝑓 𝑗

+ Γ𝑎𝑏𝑎𝑏 + Γ𝑖 𝑗𝑖 𝑗 − Γ𝑎𝑖𝑎𝑖 − Γ𝑏 𝑗𝑏 𝑗 − Γ𝑎 𝑗𝑎 𝑗 − Γ𝑏𝑖𝑏𝑖

Δ
(EN)
𝑖 𝑗𝑎𝑏

= 𝑓𝑖 + 𝑓 𝑗 − 𝑓𝑎 − 𝑓𝑏

− Γ𝑎𝑏𝑎𝑏 − Γ𝑖 𝑗𝑖 𝑗 + Γ𝑎𝑖𝑎𝑖 + Γ𝑏 𝑗𝑏 𝑗 + Γ𝑎 𝑗𝑎 𝑗 + Γ𝑏𝑖𝑏𝑖,

(3.22)

and the MP denominators are given by

Δ
(MP)
𝑎𝑖

= 𝑓𝑎 − 𝑓𝑖

Δ
(MP)
𝑖𝑎

= 𝑓𝑖 − 𝑓𝑎

Δ
(MP)
𝑎𝑏𝑖 𝑗

= 𝑓𝑎 + 𝑓𝑏 − 𝑓𝑖 − 𝑓 𝑗

Δ
(MP)
𝑖 𝑗𝑎𝑏

= 𝑓𝑖 + 𝑓 𝑗 − 𝑓𝑎 − 𝑓𝑏 .

(3.23)
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For additional details, we refer to Hergert et al. [3].

An alternative formulation to the White generator regularizes the matrix elements via the

arctan function, so that “rotations” of the Hamiltonian are restricted to the interval
]
− 𝜋

4 ,
𝜋
4
[

[4]. This formulation proves useful in the reference ensemble (Chapter 6), where this additional

constraint also constrains the optimization manifold of correlation parameters.

The White-Atan generator reads

[WA(𝑠) =
∑︁
𝑝ℎ

1
2

arctan
2 𝑓𝑎𝑖 (𝑠)
Δ𝑎𝑖 (𝑠)

𝑁
[
𝑎†𝑎𝑎𝑖

]
+ 1

4

∑︁
𝑎𝑏𝑖 𝑗

1
2

arctan
2Γ𝑎𝑏𝑖 𝑗 (𝑠)
Δ𝑎𝑏𝑖 𝑗 (𝑠)

𝑁

[
𝑎†𝑎𝑎

†
𝑏
𝑎 𝑗𝑎𝑖

]
− 𝐻.𝑐..

(3.24)

Finally, we note that the White generator can be implemented for a general, fractional reference

state (e.g. the reference ensemble) by multiplying the relevant particle and hole indices with the

corresponding particle and hole occupation numbers. This is the same strategy we use for density

matrix normal-ordering in Chapter 2.8. For example, the matrix elements relevant to the one-body

denominatorΔ𝑎𝑖 in the White generator may be transformed to this generalized single-particle index

scheme via,

𝑓𝑖 −→ 𝑓𝑝𝑛𝑝

𝑓𝑎 −→ 𝑓𝑝𝑛𝑝

Γ𝑎𝑖𝑎𝑖 −→ Γ𝑝𝑞𝑝𝑞𝑛𝑝𝑛𝑞𝑛𝑝𝑛𝑞 .

(3.25)

By transforming the matrix elements in this way, we ensure the White generator is compatible with

the MR-IMSRG flow equations.

3.4.3 Brillouin Generator

In MR-IMSRG applications, the so-called Brillouin generator has proven to be a very useful

and robust choice. It is defined by considering the change of the energy expectation value in

the (potentially correlated) reference state under unitary variations. The evolved Hamiltonian

is required to satisfy the so-called irreducible Brillouin conditions (IBCs) [5, 2], which are the
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stationarity conditions for the unitary variation:

⟨Φ|
[
𝐻 (∞), 𝑁

[
𝑎†𝑝𝑎𝑞

] ]
|Φ⟩ = 0

⟨Φ|
[
𝐻 (∞), 𝑁

[
𝑎†𝑝𝑎

†
𝑞𝑎𝑠𝑎𝑟

] ]
|Φ⟩ = 0

. . . (including conjugates).

(3.26)

Note that we cannot distinguish particle and hole indices here, since we allow correlated reference

states and ensembles. In the limit where |Φ⟩ is a single Slater determinant, the IBCs reduce to the

decoupling conditions in Equation 3.19.

The Brillouin generator is written in second-quantized form as usual,

[(𝑠) =
∑︁
𝑝𝑞

[𝑝𝑞 (𝑠)𝑁
[
𝑎†𝑝𝑎𝑞

]
+ 1

4

∑︁
𝑝𝑞𝑟𝑠

[𝑝𝑞𝑟𝑠 (𝑠)𝑁
[
𝑎†𝑝𝑎

†
𝑞𝑎𝑠𝑎𝑟

]
,

(3.27)

where the matrix elements [𝑝𝑞 (𝑠), [𝑝𝑞𝑟𝑠 (𝑠) are written in terms of the IBCs in Equation 3.26:

[𝑝𝑞 (𝑠) ≡ ⟨Φ|
[
𝐻 (𝑠), 𝑁

[
𝑎†𝑝𝑎𝑞

] ]
|Φ⟩

[𝑝𝑞𝑟𝑠 (𝑠) ≡ ⟨Φ|
[
𝐻 (𝑠), 𝑁

[
𝑎†𝑝𝑎

†
𝑞𝑎𝑠𝑎𝑟

] ]
|Φ⟩ .

(3.28)

Since these matrix elements vanish when the energy becomes stationary, we can think of the

Brillouin generator as a kind of gradient of the energy under unitary variations. The commutators

in Equation 3.28 are evaluated according to the generalized Wick contraction discussed in Chapter

2.6. The procedure for evaluating the commutators is similar to the derivation outlined in Chapter

3.3, but additional contractions appear that depend on the irreducible two- and three-body density

matrices (see Chapter 2.6). Following Hergert [2], the Brillouin matrix elements are written in
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Equations 3.29 and 3.30,

[𝑝𝑞 =(𝑛𝑞 − 𝑛𝑝) 𝑓𝑞𝑝 −
1
2

∑︁
𝑟𝑠𝑡

(
Γ𝑞𝑟𝑠𝑡_𝑝𝑟𝑠𝑡 − Γ𝑟𝑠𝑝𝑡_𝑟𝑠𝑞𝑡

)
(3.29)

[𝑝𝑞𝑟𝑠 =Γ𝑟𝑠𝑝𝑞 (𝑛𝑝𝑛𝑞𝑛𝑟𝑛𝑠 − 𝑛𝑝𝑛𝑞𝑛𝑟𝑛𝑠)

+
∑︁
𝑡

(
(1 − 𝑃𝑝𝑞) 𝑓𝑡 𝑝_𝑡𝑞𝑟𝑠 − (1 − 𝑃𝑟𝑠) 𝑓𝑟𝑡_𝑝𝑞𝑡𝑠

)
+ 1

2

(
(_Γ)𝑟𝑠𝑝𝑞 (1 − 𝑛𝑝 − 𝑛𝑞) − (Γ_)𝑟𝑠𝑝𝑞 (1 − 𝑛𝑟 − 𝑛𝑠)

)
+ (1 − 𝑃𝑝𝑞 − 𝑃𝑟𝑠)

∑︁
𝑡𝑢

(𝑛𝑞 − 𝑛𝑟)Γ𝑡𝑟𝑢𝑞_𝑡 𝑝𝑢𝑠

+ 1
2

∑︁
𝑡𝑢𝑣

(
(1 − 𝑃𝑟𝑠)Γ𝑟𝑡𝑢𝑣_𝑡 𝑝𝑞𝑢𝑣𝑠 − (1 − 𝑃𝑝𝑠)Γ𝑡𝑢𝑝𝑣_𝑡𝑢𝑞𝑣𝑟𝑠

)
.

(3.30)

For additional details, we refer to Hergert [2].

For completely general reference states, the use of the Brillouin generator naively increases our

storage requirements to 𝑂 (𝑁6) because of its dependence on _𝑝𝑞𝑟𝑠𝑡𝑢, and the computational cost

increases to 𝑂 (𝑁7) because of the summation in the last line of Equation 3.30. Fortunately, we can

exploit that the irreducible three-body density matrix is either compact or highly structured for many

relevant types of correlated reference states, so that the 𝑂 (𝑁4) storage and 𝑂 (𝑁6) computational

cost of the standard IMSRG(2) approach can be preserved in MR-IMSRG(2) applications.
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CHAPTER 4

MODEL HAMILTONIANS

4.1 The Pairing Model Plus Particle-Hole Model

In this section, we introduce the model Hamiltonian which is used frequently in the body of

work—namely, the pairing model. Information in this Chapter is compiled largely from Hjorth-

Jensen et al. [5] and Hjorth-Jensen et al. [6], although this model appears elsewhere outside the

context of second-quantized many-body physics. The pairing model is a convenient tool for testing

computational and theoretical methods in nuclear physics. For one reason, the model is exactly

solvable, because the many-body basis dimension is small enough that the exponential scaling is

not an issue.1. We may probe the exact solution to the pairing model to validate the results for

a particular method. For another reason, the pairing model captures qualitative features of more

realistic nuclear interactions, despite its simplicity [5].

The pairing model consists of equidistant energy levels which contain up to two particles per

level with opposite spin values, which we label + (up) and − (down) for convenience. The single-

particle states are implicitly assumed to be the eigenstates of the one-particle operator, so that the

one-body interaction term is diagonal. The two-body interaction term acts on pairs of particles

with the same energy but opposite spin. Thus, the pairing model Hamiltonian can be written as

𝐻𝑝𝑎𝑖𝑟𝑖𝑛𝑔 = 𝛿
∑︁
𝑝𝜎

(𝑝 − 1)𝑎†𝑝𝜎𝑎𝑝𝜎 −
𝑔

2

∑︁
𝑝𝑞

𝑎
†
𝑝+𝑎
†
𝑝−𝑎𝑞−𝑎𝑞+, (4.1)

where 𝜎 runs over all spin values, 𝛿 controls the energy level spacing, and 𝑔 controls the pairing

strength. Note that the explicit − sign in the pairing term implies that we have an attractive pairing

interaction for 𝑔 > 0, i.e., the formation of pairs is energetically favorable. Moreover, the interaction

term cannot break pairs by moving the particles to different energy levels, and it does not change

the spins of the pair it acts upon. This implies that both the number of pairs in the system and the

1We will demonstrate how to extract the exact solution via Full Configuration Interaction in a later section.
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p=1

𝜖
↑ ↓

↑ ↓

Figure 4.1 Pairing model of four particles at half filling, with two opposite spins per level. The vertical axis
indicates increasing energy. The dashed line indicates the Fermi surface.

total spin projection

𝑆𝑧 =
ℏ

2

𝐴∑︁
𝑖=1

𝜎𝑧 (𝑖) (4.2)

are conserved.

To add complexity to our model, we can introduce an additional interaction term that can create

one-particle-one-hole excitations and break up pairs. The Hamiltonian of this pairing-plus-particle-

hole (P3H) model can be written as

𝐻𝑃3𝐻 = 𝐻𝑝𝑎𝑖𝑟𝑖𝑛𝑔 −
𝑏

2

∑︁
𝑝𝑝′𝑞

(𝑎†𝑝+𝑎†𝑝−𝑎𝑝′−𝑎𝑞+ + 𝑎†𝑞+𝑎†𝑝′−𝑎𝑝−𝑎𝑝+), (4.3)

where 𝑏 controls the particle-hole / pair-breaking interaction strength. Note that the spin structure

of this interaction was chosen such that 𝑆𝑧 remains conserved.

Figure 4.1 shows a ground-state configuration for an attractive pairing model with four particles

distributed over four energy levels (for a total of eight single particle states). In the P3H model,

on the other hand, we expect richer behavior because of the competition between the pairing and
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b = 0 b 0

Figure 4.2 The left panel features a P3H Hamiltonian with 𝑏 = 0, i.e. no pair-breaking. Black maps to zero.
The right panel features a P3H Hamiltonian with 𝑏 ≠ 0. Grey maps to zero. The diagonal elements have
been subtracted out to emphasize the off-diagonal structure of each Hamiltonian.

pair-breaking terms, and the configuration shown in Figure 4.1 will most likely not be a good

approximation for the ground state.

In Figure 4.2, we show the qualitative structure of off-diagonal elements in the P3H Hamiltonian.

We observe that the nonzero pair-breaking term probes new sectors of the Hamiltonian that were

not accessible in the pure pairing interaction.

In Figures 4.3 and 4.4, we visualize the eigenstate structure of several P3H Hamiltonians, with

no pair-breaking and no pairing, respectively. The qualitative features of these eigenstates are

similar, in nature, to wavefunctions in the nuclear shell model, hence the heavy focus on the P3H

model in many of this results of this work.

Each P3H Hamiltonian has been prepared in a basis of Slater determinants (SD) in an occupation

number representation; therefore, each coefficient in the eigenvectors plotted in Figures 4.3 and

4.4 correspond to a particular SD configuration. For example, the first six coefficient indexed by

v0 through v5 correspond to fully-paired configurations. Coefficients beyond v5 correspond to

unpaired configurations, in the spin 𝑆 = 0 sub-block.

By examining the wavefunction structure in the SD basis, we learn how important each SD
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Figure 4.3 Three pairing-only examples of wavefunction structure in the P3H model. The horizontal axis is
the index of the eigenvector coefficient. The vertical axis is the corresponding squared eigenvector coefficient.

configuration is in describing a particular eigenstate. For example, all three panels in Figure

4.3 immediately suggest that unpaired configurations contribute nothing to the eigenstates of the

pairing-only P3H model. However, we see that the pairing strength controls how much each paired

configuration contributes to the structure of the eigenstate. All three panels in Figure 4.4 show that

most, or all, SD configurations are important to the eigenstate structure of the pair-breaking-only

P3H model. Contributions for paired and unpaired configurations are especially important in the

repulsive pair-breaking case.

Understanding the structure of the P3H eigenstates in the SD configuration basis is useful for

the reference-state ensemble discussions in Chapter 6, because it offers insight on how to best to
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Figure 4.4 Three pair-breaking-only examples of wavefunction structure in the P3H model. The horizontal
axis is the index of the eigenvector coefficient. The vertical axis is corresponding squared eigenvector
coefficient.

design an ensemble of SD configurations to capture the most important behavior in a particular

eigenstate, or the full eigenspectrum.

The eigenvectors in Figures 4.3 and 4.4 were obtained via FCI calculations of the P3H Hamil-

tonians, which is the subject of Section 2.

4.2 Chiral Effective Field Theory for Nuclear Interactions

In this section, we provide a brief overview of chiral effective field theory (𝜒EFT), focusing on

breadth rather than depth, in order to build context for the results in Chapters 7 and 8. Machleidt

and Entem [7] present a detailed discussion on the derivation of nuclear interactions from 𝜒EFT,
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and Piarulli and Tews [8] provides a comprehensive review of local chiral nuclear interactions, in

particular. We will skip any rigorous mathematical description of 𝜒EFT, and instead summarize

where the low-energy constants (LECs), relevant to Chapters 7 and 8, appear in the theory.

𝜒EFT is a low-energy, effective formulation of quantum chromodynamics (QCD)—“effective”,

in the sense that the most effective degrees of freedom are strategically chosen to systems of

interacting nucleons at the energy scales relevant to nuclear science experiments. QCD is the

fundamental theory of the strong interaction in the Standard Model of Particle Physics, and provides

tools to describe interactions at the level of quarks and gluons, which are the constituents of nucleons

and other strongly interacting composite particles. Since the description of even a single nucleon at

this level is extremely challenging, the description of all but the lightest nuclei is all but infeasible.

However, it is not necessary to do so because the quark substructure of individual nucleons is

irrelevant for the description of nuclear structure and dynamics. Thus, 𝜒EFT pivots the description

to the nucleons themselves, and uses pions as the mediators of the strong interaction at low

energies. Essentially, we are lowering the resolution at which we describe the system, “blurring”

out the substructure of nucleons and pions so that they can be treated as a point-like particles.

The conceptual framework of any EFT posits that we need to consider all interactions that are

consistent with the symmetries of the underlying theory. In addition to rotational, translational

and Lorentz invariance that are required of fundamental interactions, it is necessary to account for

the chiral symmetry of QCD [7, 8]. In principle, we can conveive of infinitely many interactions

that respect those symmetries, but a properly constructed EFT provides a systematic framework

for classifying their importance and truncating interactions that give negligible contributions to the

observables of interest — in the case of 𝜒EFT, this is the power counting explained below. In the

𝜒EFT framework, interactions now fall into two broad categories — long-range interactions that are

modeled by the exchange of pions (𝜋) between nucleons (𝑁), and short-range contact interactions

between nucleons. The parameters associated with corrections to 𝜋𝑁 interaction vertices as well

as the contact interactions parameterize the QCD physics that is not directly resolved by the EFT

in the most general, unbiased way, so as not to introduce modeling artifacts. Collectively, these
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parameters are referred to as the low-energy constants (LECs) of the theory. In principle, they

could be determined from QCD via direct computations or matching results for observables that are

accessible in both theories, but this is currently not feasible. Instead, the LECs are fit to low-energy

QCD data, such as NN scattering phase shifts, or 3N observables.

In addition to a 𝜒EFT with 𝑁 and 𝜋 degrees of freedom, we will also consider the so-called

Δ-full 𝜒EFT, a variant that additionally includes the Δ isobar as a degree of freedom. This particle

can be thought of as an excited 𝑁𝜋 resonant state. The energy and momenta of this excitation

are sufficiently low to overlap with the range we seek to describe with 𝜒EFT, so testing its impact

on the description of nuclear observables is of high interest. We do not that the Δs are only

included as virtual intermediate states — roughly speaking, this means that while Δs will not be

observed as constituents of a nucleus on any experimental time scale, they can be formed for brief

instants of time during an interaction process that might leave an imprint on the description of

nuclear observables. In the Δ-less 𝜒EFT, the effects of the intermediate Δ excitations are implicitly

included in LECs of the theory.

The interactions relevant to this dissertation have been derived from Weinberg power-counting

[9] of the ratio 𝑄/Λ𝑏, where 𝑄 is a typical momentum scale and Λ𝑏 is the breakdown energy scale,

or cutoff, beyond which 𝜒EFT is no longer a valid theory for the chosen degrees of freedom. Λ𝑏 is

typically chosen in the range 500 − 1000 MeV, either based on the masses of particles that are not

explicit degrees of freedom in the 𝜒EFT scheme, or combinations of parameters that are related

to physics beyond the 𝜒EFT description. With typical momentum scales 𝑄 being of the order of

the Fermi momentum 𝑘𝐹 ≈ 1.4 fm−1 (corresponding to approximately 280MeV) or the pion mass

𝑚𝜋 = 0.7 fm−1 (approx. 140 MeV), the ratio 𝑄/Λ𝑏 will then roughly be on the order of 1/5 to 1/3,

so that higher-order processes are suppressed at a reasonable rate.

The pion exchange and contact interactions can then be organized according to powers 𝑄/_𝜒,

leading to the organization scheme shown in Figure 4.5. In the common terminology, the

(𝑄/Λ𝑏)a=0 = 1 interactions are referred to as leading order (LO), a = 2 as next-to-leading or-

der, a = 3 as next-to-next-to-leading order (NNLO) and so on. Note the absence of a = 1, because
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Figure 4.5 Figure taken from Piarulli and Tews [8]. On the left column are the NN force diagrams. On the
right column are the 3N force diagrams. Solid lines are nucleons, while dashed lines are pions. Double solid
lines are Δ-isobars. Each diagram may be identified with an LEC, which controls the strength of the contact
force described by the diagram.

parity invariance stipulates that nuclear potentials cannot be linear in momentum [7, 8]. Diagrams

with dashed lines involve the exchange of pions, while diagrams with only solid single lines are

nuclear contact interactions. Double solid lines indicate Δ isobars in the Δ-full 𝜒EFT. The arrows

indicate how Δ-full diagrams emerge from the short-range parameterizations in the Δ-less theory

— note that these diagrams are usually promoted in order, which suggests that there should be

differences in how rapidly observables converge in the two EFT variants, and which order of the

expansion is required to achieve a desired precision.

The relative momentum described by 𝑁𝑁 scattering is decomposed into “partial wave” con-

tributions of differing angular momentum, where the S-wave partial waves corresponds to orbital
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angular momentum equal to 0, P-wave partial waves corresponds to orbital angular momentum

equal to 1, D-wave partial waves corresponds to orbital angular momentum 2, and so on. The

orbital angular momentum couples to spin to produce the partial waves, characterized by differing

total angular momentum. At LO, only one-pion exchange and S-wave contact forces contribute. At

NLO, we have two-pion exchanges plus subleading contact forces in the S wave and P waves. In the

delta-full 𝜒EFT, a leading 3N force also appears at this order (also called the Fujita-Miywazawa

force, named for the work of [4] in its derivation). At NNLO, there is no new contact term in the

NN interaction, but higher-order corrections to the 𝜋𝑁 vertex appear: The LECs which control

these contributions are 𝑐1, 𝑐2, 𝑐3, 𝑐4, where 𝑐2 is only relevant in the Δ-full theory. The LECs 𝑐1, 𝑐3

and 𝑐4 also appear consistently in the long-range part of the NNLO 3N interaction, and in addition,

a mixed long- and short-range term (proportional to 𝑐𝐷) and a genuine contact (proportional to 𝑐𝐸 )

contribute. At N3LO contact forces up to D-waves appear in the NN force, adding to the number of

parameters, in addition to more complicated but parameter-free 3N forces as well as a leading 4N

force. In Tables 4.1 and 4.2 we list the “baseline” LEC sets for two different NNLO interactions

(up to 3B forces) and one N3LO interaction (up to 2B forces), respectively, that will be explored in

later chapters of this work.
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CHAPTER 5

BUILDING AN IMSRG MANY-BODY CODE USING TENSOR NETWORKS

5.1 Introduction

Tensor network theory, in the context of this dissertation, describes the abstraction of multidi-

mensional arrays and mathematical operations on them into a diagrammatic “formalism”, which

simplifies the calculations which involve these often complex data structures. The diagrammatic

method of tensor networks is somewhat less rigorous, but analogous, to the Goldstone and Hugen-

holtz diagrammatic notation used in second-quantized many-body theory (see Chapter 4 of Shavitt

and Bartlett [11]) to render many-body calculations less cumbersome. As a result, translating

operators and working equations in methods like the IMSRG into tensor networks feels natural. In

addition, tensor networks and tensor decompositions have been successfully applied to many-body

methods in areas adjacent to this work, including Many-Body Perturbation Theory [14, 13], vari-

ational Monte-Carlo [1], Tree Tensor Network States [6], Density Matrix Renormalization Group

[12], and Tensor Network Renormalization [2].

In this body of work, we use tensor networks to provide an interface for abstraction of the

computation of the IMSRG flow equations (e.g. Chapter 3, Equation 3.18). We want to offload the

effort of computing the the IMSRG flow equations to a generalized tensor network library, in order

to leverage the efficiency and optimization techniques implemented therein. With the computational

load abstracted, we may freely exchange tensor network libraries, as well as sync our many-body

codes with future improvements in those libraries. Ultimately, we strive for a separation of the

workload between many-body physicists and computer scientists, so that the scientific progress

benefits from ongoing optimizations of algorithms, without the friction associated with ad-hoc

improvements to the many-body codebase. This strategy offers more long-term sustainability for

the code relevant to the science, because of changing compiler and hardware landscapes.

In addition, we present two IMSRG codes which were written or contributed to aid the studies

that encompass this dissertation. These codes employ key ideas from tensor network theory, and
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are discussed in Chapter 5.5 and Chapter 5.6. The purpose of these sections is to explain how these

codes operate and the logic in their design. Appendix C features a catalog of these two codes, as

well as their dependencies.

Both IMSRG codes were designed with an object-oriented approach, so that the pieces which

comprise the IMSRG “engine” are modular in nature. That is, users may e.g. write their own

Hamiltonian class, inheriting from the appropriate interfaces, and plug directly into the rest of

the IMSRG machine with relative simplicity. Additionally, one may write their own backends for

performing the tensor contractions with solve the IMSRG flow equation terms. In principle, the

administrative overhead in executing an object-oriented code is negligible compared to a sequential

version of the same code; however, there are certainly areas within the codes we introduce that

could benefit from a closer look at optimal memory management and code organization. For now,

our goal is to provide simple access to validating results via the P3H model, as well as a template

for improving the IMSRG production code with tensor libraries.

Chapter 5.4 provides a detailed overview of how tensor networks are integrated into the com-

putation of the IMSRG flow equations. These tensor networks are translated into code by tensor

network calculation libraries such as TensorNetwork1 [9], built in Python, and the Tensor Algebra

Compiler2 [5], built in C++.

5.2 Tensor Network Diagrams

We may introduce a tensor, graphically as in Figure 5.1, as a node with a number of dangling

edges corresponding to indices of a multidimensional array [9, 7]. Abstractly, the order of the edges

does not matter (although they might matter in certain physics applications). As a general rule,

dangling edges represent fixed indices, and edges between vertices (or loops) are summed over in

an operation called a contraction.

Contractions between tensors are performed graphically via connecting two edges. For example,

a trace over one index in Figure 5.2 encodes the operation written mathematically,

1Source: https://github.com/google/TensorNetwork
2Source: https://github.com/tensor-compiler/taco
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𝐴

Figure 5.1 A tensor 𝐴 with some number of dangling edges. Evaluation of indices 𝑖 . . . 𝑗 . . . 𝑘 . . . 𝑙 gives the
value of 𝐴 at that location.

𝑖

𝑗
𝑖𝐴 𝐴

Figure 5.2 The trace operation over two dangling edges of the tensor 𝐴.

tr(𝐴) =
∑︁
𝑖

𝐴𝑖𝑖 . (5.1)

Additional examples of common linear algebra operations, translated to a tensor diagram,

are displayed in Figure 5.3. Notice that the resultant tensor is immediately identified by the

dangling edges of the network, which remain fixed through the operation. A tensor network,

however arbitrarily complex, will always involve dangling edges and/or contraction edges. Based

on how the nodes and edges are connected in the diagram, we can always translate the diagram to

mathematical form.

5.3 Factorization with Tensor Train Decomposition

In general, the problems involving tensors require computing resources that scale exponentially

in the dimension of the problem. Naive tensor storage (that is, a contiguous multidimensional

array) is impractical or impossible to implement in large dimensional problems. As a result,

we seek efficient and effective representations of tensors that, in general, do not require storage
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𝑖

𝑖 𝑗

𝑖 𝑘 𝑗

𝑅 =
∑

𝑖 𝐴𝑖𝐵𝑖 𝐴 𝐵

𝑅𝑖 =
∑

𝑗 𝐴𝑖 𝑗𝐵 𝑗 𝐴 𝐵

𝑅𝑖 𝑗 =
∑

𝑘 𝐴𝑖𝑘𝐵𝑘 𝑗 𝐴 𝐵

Figure 5.3 Depicted are the vector-vector multiplication, matrix vector multiplication, and matrix-matrix
multiplication in tensor diagrams.

of the complete tensor—instead, the tensor is decomposed into characteristic factors which can

be contracted in order to reconstruct the full tensor. The tensor train decomposition (or TT-

decomposition) is one such factorization technique introduced by Oseledets [8] as an alternative to

the NP-hard problem of the canonical decomposition [8],

𝐴(𝑖1, 𝑖2, . . . , 𝑖𝑑) =
𝑟∑︁

𝛼=1
𝑈1(𝑖1, 𝛼)𝑈2(𝑖2, 𝛼) . . . 𝑈𝑑 (𝑖𝑑 , 𝛼), (5.2)

where 𝐴(𝑖1, 𝑖2, . . . , 𝑖𝑑) represents the element of 𝐴 associated with the indices 𝑖1, 𝑖2, . . . , 𝑖𝑑 . Note

that 𝑖𝑘 spans an unspecified range 𝑛𝑘 , which may or may not be equal to another index range 𝑛𝑙 . For

most methods involving the canonical decomposition, the decomposition rank 𝑟 must be known

and the algorithms for computing the low-rank tensor components are not stable [8]. Figure 5.4

illustrates a schematic diagram of the canonical decomposition. There are 𝑑 canonical factors

which correspond to the tensor dimension 𝑑. Each decomposition rank features an outer product

over all canonical factors in that rank, and the sum over all ranks generate the full tensor 𝐴. The

decomposition rank 𝑟 is taken as the minimum number of terms which reproduce 𝐴 satisfying an

error threshold 𝜖 .

The TT-decomposition seeks a tensor 𝐴 which approximates a target tensor 𝐵 such that 𝐴 ≈ 𝐵.

The elements of 𝐴, which is characterized by 𝑑 indices, are computed via

𝐴(𝑖1, 𝑖2, . . . , 𝑖𝑑) = 𝐺 (𝑖1)𝐺 (𝑖2) . . . 𝐺 (𝑖𝑑), (5.3)
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𝑖1 . . . 𝑖𝑑
𝑖1 𝑖𝑑

𝐴 =
∑𝑟

𝛼=1 𝑢
(𝛼)
1

⊗
. . .

⊗
𝑢
(𝛼)
𝑑

Figure 5.4 Schematic tensor network diagram of the canonical decomposition. The rank 1 tensors (vectors)
are referred to as canonical factors.

𝑖1 . . . 𝑖𝑑
𝑖1 𝑖2 𝑖𝑑

𝛼1 𝛼2 𝛼𝑑−1A = G1 G2 . . . G𝑑

Figure 5.5 Schematic tensor network diagram of the tensor-train decomposition. When drawing the recon-
struction of the full tensor, note that the boundary cores appear as rank 2 tensors, while inner cores appear
as rank 3 tensors.

where 𝐺 (𝑖𝑘 ) is a matrix with dimension 𝑟𝑘−1 × 𝑟𝑘 . The elements of the tensor 𝐴 are expressed as a

matrix product. Thus, instead of storing the number of elements corresponding to 𝐴, which might

be as large as 𝑛𝑑 , we store a number of elements equal to
∑𝑑

𝑘=1 𝑟𝑘−1𝑟𝑘 which is considerably more

efficient in most cases. Figure 5.5 draws a TT-decomposition diagram. The sum over decomposition

ranks does not appear in the TT-decomposition, in contrast to the canonical decomposition in Figure

5.4. The auxiliary indices 𝛼 which contract between TT cores are fixed. The cores which reproduce

the elements of 𝐴, which we denote with𝐺, are structurally different than the cores which reproduce

the full tensor A (in bold-face), which we denote in bold-face G. However, we emphasize that G is

a full realization of the parameters that characterize 𝐺.

The procedure for generating a TT-decomposition is not unique in general, due to algorithms
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which minimize a norm deviation, such as the Frobenius error. In these cases minimization may

not yield unique results. In this study, we have not used an algorithmic procedure to generate the

relevant TT-decomposition, instead relying on ad hoc inspection, because the decomposition are

simple enough to derive by hand. The inspection method is best explained by example. Particularly

helpful explanations can be found in [10]. Consider a rank 2 tensor 𝐴 with elements given by

𝐴(𝑎, 𝑏) = 𝑛𝑎 − 𝑛𝑏, where the right-hand side defines a particular element, corresponding to (𝑎, 𝑏).

The elements 𝑛𝑎 and 𝑛𝑏 are numbers which come from two distinct (or equivalent) sets. Let the

size of these sets be equal to 𝑁 . Then, the total number of elements stored by the tensor 𝐴(𝑎, 𝑏) is

𝑁2.

We can generate a TT-decomposition by inspection from the analytical representation of the

tensor elements 𝐴(𝑎, 𝑏). We need a number of smaller tensors 𝐺 equal to 2, by Equation 5.3

(𝑑 = 2). For example,

𝐴(𝑎, 𝑏) = 𝐺 (𝑛𝑎)𝐺 (𝑛𝑏) =
[
𝑛𝑎 1

] 
1

−𝑛𝑏

 = 𝑛𝑎 − 𝑛𝑏 . (5.4)

In order to evaluate the tensor element at a particular index location, we need only evaluate the

multiplication of the smaller tensor “cores” corresponding to that index location. Note that under the

TT-decomposition scheme, we need only store the decomposed tensors, which in this case amounts

to 2𝑁 + 2𝑁 = 4𝑁 total elements instead of 𝑁2 elements to store the full tensor—a reduction in

memory scaling from quadratic to linear (refer to Figure 5.6 for an example of how memory scales

with dimension). The disadvantage, of course, is the computational cost associated with evaluating

each tensor element dynamically. Later we will show that for a sufficient computing environment,

this cost is negligible for the TT-decomposition relevant to this body of work. Although, we

emphasize that the cost is dependent on the problem for which the TT-decomposition has been

applied.

Notice that the TT-decomposition in Equation 5.4 can be evaluated to compute the full tensor

A by building two matrices G(𝑛𝑎),G(𝑛𝑏) from all possible 𝑛𝑎,𝑛𝑏 in tensor cores 𝐺 (𝑛𝑎),𝐺 (𝑛𝑏).
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Figure 5.6 Memory scaling for the rank 2 tensor in Equation 5.4, comparing storage of the full matrix to the
storage for the tensor train components.

Let 𝑁 = 4, and let the possible 𝑛𝑎 = 𝑛𝑏 = [1, 1, 0, 0]] for 𝑎 = 1, 2, 3, 4, respectively. Then,

G(𝑛𝑎)G(𝑛𝑏) =



1 1

1 1

0 1

0 1




1 1 1 1

−1 −1 0 0



=



0 0 1 1

0 0 1 1

−1 −1 0 0

−1 −1 0 0


= A.

(5.5)

In this way, the tensor cores can be fully contracted to recover the full tensor 𝐴. An important

feature of this exact decomposition is that we can used the decomposed tensor cores to perform

calculations without ever explicitly constructing the full tensor 𝐴. Consider the matrix-vector
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operation Av, where vT = [1, 2, 3, 4],

Av =



0 0 1 1

0 0 1 1

−1 −1 0 0

−1 −1 0 0





1

2

3

4


=



7

7

−3

−3


(5.6)

G(𝑛𝑎)G(𝑛𝑏)v =



1 1

1 1

0 1

0 1




1 1 1 1

−1 −1 0 0




1

2

3

4


=



1 1

1 1

0 1

0 1



10

−3

 =



7

7

−3

−3


.

(5.7)

This short example is not meant to formally prove this fact, but to provide intuition for why this

method works. The outer axes of the decomposition contain information about the elements of the

full tensor. These axes directly interact with the multiplying factor, and the auxiliary axes contract

only among themselves. Therefore, as long as the full tensor cores are stored for a particular (exact)

TT-decomposition, calculations involving the full tensor can be performed by substituting the TT-

decomposition. In this idealized example of exact decomposition, the operation in Equation 5.6

scales 𝑂 (𝑁2), while the operation in Equation 5.7 scales 𝑂 (2∗𝑁 +𝑁 ∗2) = 𝑂 (4𝑁). In this special

case, the complexity is actually reduced (not accounting for the associated cost of performing the

decomposition, which in this special case was performed ad hoc by inspection).

An additional benefit of the TT-decomposition is efficiency in large-scale calculations. Our

hope is that the cost of evaluating the TT-decomposition, in tandem with e.g. a matrix calculation,

does not affect performance when compared to standard numerical methods; in Figure 5.7 we

show that factorization via TT-decomposition of the two input matrices to a random matrix-matrix

calculation achieves comparable time scaling to standard, optimized techniques. Note that the
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Figure 5.7 Time scaling for performing matrix-matrix multiplication, while comparing several methods.
Each curve computes multiplication of two random, dense, square matrices of varying dimension. The
calculations were performed in Python using TensorNetwork [9] and numpy.

TT-decomposed calculations seem to scale slightly better than the naive 𝑂 (𝑁3), which is likely due

to a similar scaling reduction to the example in Equations 5.6 and 5.7.

5.4 Tensor Networks in the IMSRG

As discussed in the Introduction (Chapter 5.1), one of the reasons for viewing the IMSRG

through a tensor network lens is to sequester the effort to compute the tensor contractions in

Equation 3.18, the IMSRG(2) flow equations, into a separate library, or modular environment,

where the optimization can be controlled independently of the many-body code. Additionally,

we leverage the TT-decomposition discussed in Chapter 5.3 to bundle the decomposed occupation

factors in Equation 3.18 with the IMSRG coefficient tensor contraction operations. In the future, we

want to leverage tensor factorization beyond the occupation factors, and apply these factorization

ideas to the IMSRG flow terms (Equation 3.18) directly. Zhu et al. [15] has shown success in

factorizing the 𝜒EFT interactions (see Chapter 4.2) used as inputs for the IMSRG, which motivates

further effort in a factorized IMSRG flow.

Based on the discussion in Chapter 5.2, we observe that any term in Equation 3.18 which

contains a multiplication of two tensors, as well as a sum over a shared index between those
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Figure 5.8 Tensor diagram corresponding to the two-body contribution to the reference energy in the
IMSRG(2) flow equations in Equation 3.18.

two tensors, can be translated to a tensor network diagram. For example, consider the two-body

contribution to the reference energy (ignoring numerical factors):

𝐸2(𝑠) =
∑︁
𝑎𝑏𝑐𝑑

[𝑎𝑏𝑐𝑑 (𝑠)Γ𝑐𝑑𝑎𝑏 (𝑠)𝑛𝑎𝑛𝑏𝑛𝑐𝑛𝑑 . (5.8)

While this term actually contains three tensors to contract, we can leverage the fact that the

occupation factor in 𝑛𝑎𝑛𝑏𝑛𝑐𝑛𝑑 is just a number independent of 𝑠; we may freely commute the

occupation factor among the IMSRG(2) coefficients, and combine with the [ factor via elementwise

multiplication to obtain

𝐸2(𝑠) =
∑︁
𝑎𝑏𝑐𝑑

[′𝑎𝑏𝑐𝑑 (𝑠)Γ𝑐𝑑𝑎𝑏 (𝑠), (5.9)

where [′
𝑎𝑏𝑐𝑑
(𝑠) is now

[′𝑎𝑏𝑐𝑑 (𝑠) = 𝑛𝑎𝑛𝑏𝑛𝑐𝑛𝑑 · [𝑎𝑏𝑐𝑑 (𝑠). (5.10)

The tensor network diagram corresponding to this term might look like Figure 5.8.

Let us express the elements of the left hand tensor [′(𝑠) in a network diagram, assuming that

the occupation factor 𝑛𝑎𝑛𝑏𝑛𝑐𝑛𝑑 has been TT-decomposed (see Appendix A.1, Equation A.5). This

particular occupation factor is especially easy to decompose, because the analytical form of the

tensor elements is a simple product. Then, the decomposition network would be evaluated for

each element of the full tensor [′(𝑠). Figure 5.9 illustrates where the TT-decomposition of the

occupation factor integrates with the network for this term, which further increases the efficiency

of evaluating the full term in a tensor network architecture.
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Figure 5.9 Diagram illustrating where the tensor train decomposition of the occupation factor 𝑛𝑎𝑛𝑏𝑛𝑐𝑛𝑑
integrates with the tensor network to compute Equation 5.9. The elements of the occupation factor are
generated via repeated evaluations of the corresponding TT-decomposition. Then, each element is multiplied
elementwise with the tensor [(𝑠) to compute [′(𝑠). Finally, [′(𝑠) is fully contracted with Γ(𝑠) to complete
the diagram.

5.5 Tensor-factors IMSRG: Python IMSRG Implementation for the P3H Model

The code called Tensor-factors IMSRG, or tfimsrg, is a Python implementation of the

IMSRG(2) (with developing support for IMSRG(3)) for the P3H model (see Chapter 4.1 and

also Appendix C.1). The code was originally developed to demonstrate the feasibility of using

Google’s TensorFlow tensor contraction API to express the IMSRG flow equations, interpreting

the complicated sums as contractions between tensors. However, the project now uses the ncon

API of the tensor contraction library TensorNetwork [9], which evaluates the contractions using the

numpy backend. TensorNetwork provides several additional backends including JAX, TensorFlow,

and PyTorch.

The codebase was designed as an importable Python package rather than a standalone exe-

cutable. Its overall structure (excluding extraneous files and directories) is:

-- tfimsrg/
|-- main.py
-- oop_imsrg/

|-- flow.py
|-- generator.py
|-- hamiltonian.py
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|-- occupation_tensors.py

The primary pieces of the IMSRG flow machine are organized into objects within theoop_imsrg/

directory. Flow.py computes the IMSRG flow equations in Equation 3.18 (as well as an implemen-

tation of the multi-reference IMSRG, see Appendix B). Generator.py computes the generators

from Chapter 3.4. Hamiltonian.py computes the model Hamiltonian, the P3H model, from

Chapter 4.1. Occupation_tensors.py pre-computes the TT-decomposed occupation factors

from Appendix A. These components are bundled and passed to the scipy solver, which integrates

the solution of the flow equations, in main.py.

5.5.1 Performance Study

The performance of the tfimsrg code, evaluating the P3H model, was measured relative to

the naive implementation of IMSRG(2) in Python using matrix calculations introduced in Chapter

10 of Hjorth-Jensen et al. [4]. Figure 5.10 shows the total wall time for several implementations of

the IMSRG(2) code that (approximately) solve the P3H model with zero pair-breaking, including

the matrix implementation, occupation factors constructed with loops, occupation factors con-

structed with contractions of TT-decomposed tensors (see Chapter 5.3 and Appendix A), and a

TT-decomposition implementation exported to the GPU. Exporting the calculations to the GPU

offers the most advantageous scaling in the context of these Python codes. All implementations

that outsource tensor contractions in the IMSRG(2) flow equation to the TensorNetwork library

perform faster than the naive implementations using matrix calculations. In Figure 5.11 we show

that the tensor library implemenation of the IMSRG(2) code captures the weak scaling feature of

the single reference IMSRG, when particle and hole states are distinct. Note that the total number

of single particle states 𝑁 = 𝑁ℎ+𝑁𝑝, where 𝑁ℎ is the number of hole states and 𝑁𝑝 is the number of

particle states. For large bases in realistic calculations, we have 𝑁𝑝 ≈ 𝑁 . The performance results

for this IMSRG(2) implementation are motivation to extend the tensor contraction strategy to a

compiled language like C++. We want to also leverage this technology to the IMSRG production

codes (Appendix C.1) which are written in C/C++.
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Figure 5.10 Total wall time versus the number of single particle states in the P3H model, excluding the pair-
breaking term. Although not depicted here, the relative scaling for a P3H model with nonzero pair-breaking
is not appreciably different. In general, the IMSRG(2) scales 𝑂 (𝑁6) with the number of single particle states
𝑁; however using the TensorNetwork library allows us to soften the prefactor on that scaling to reach larger
basis sizes.

Figure 5.11 Total wall time versus the number of single particle states, for a fixed number of hole states. The
P3H model parameters for input Hamiltonian are 𝛿 = 1.0, 𝑔 = 0.5, 𝑏 = 0.0. Although not depicted here, the
relative scaling for a P3H model with nonzero pair-breaking is not appreciably different. In this way, we can
extract the weak scaling property of the single reference IMSRG(2).
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5.6 Tensorized C++ IMSRG: C++ IMSRG Implementation for the P3H Model

The code called Tensorized C++ IMSRG, or tcimsrg, is a C++ implementation of the IMSRG(2)

for solving the P3H model (cf. Appendix C.1). This code is, more or less, a translation of tfimsrg

from Python to C++. This code also includes more features for customizing the IMSRG(2) flow at

execution time, including an option to use Dynamic Mode Decomposition (DMD) emulation of the

IMSRG flow (see Chapter 7.4). This code was designed to run as an executable, with command line

options similar to the IMSRG production code [3] (see also Appendix C.1). Again, we have taken

an object-oriented approach to keep the code modular for future development and feature addition.

The breakdown of objects is similar to tfimsrg, but we have tried to structure it according to best

practices for C++:

-- tcimsrg/
|-- CMakeLists.txt
-- build/

|-- solve_imsrg
-- include/

|-- BACKEND.hpp
|-- DMD.h
|-- flow_imsrg2.hpp
|-- generator.hpp
|-- pairinghamiltonian.hpp
|-- occupation_factors.hpp
|-- state_type.hpp
|-- system.hpp
|-- imsrg_utils.hpp

-- src/
|-- BACKEND_taco.cpp
|-- BACKEND_ublas.cpp
|-- DMD.c
|-- flow_imsrg2.cpp
|-- white.cpp
|-- white_atan.cpp
|-- brillouin.cpp
|-- pairinghamiltonian.cpp
|-- occupation_factors.cpp
|-- system.cpp
|-- main.cpp

The object headers are organized within the include/ directory, and the object source files
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which implement the instructions in their respective header files are organized under the src/

directory. Running cmake within the build/ directory will build the executable solve_imsrg.

BACKEND_taco.cpp and BACKEND_ublas.cpp set up the IMSRG(2) flow equation evaluation us-

ing TACO and uBLAS loops, respectively. DMD.c sets up the DMD emulation. Flow_imsrg2.cpp

sets up calculation the IMSRG(2) flow equation terms, based on the user’s specification of the back-

end. White.cpp, white_atan.cpp, and brillouin.cpp set up the generators specified in Chap-

ter 3.4. Pairinghamiltonian.cpp sets up the P3H model Hamiltonian according to Chapter 4.1.

Occupation_tensors.cpp pre-computes the TT-decomposed occupation factors from Appendix

A. System.cpp organizes the ODE system which is passed to the Boost library’s odeint tool.

Finally, the file main.cpp combines all relevant objects for computing a full IMSRG(2) calculation

into the executable solve_imsrg.

5.6.1 Performance Study

Here we discuss the performance comparison between two different implemented calculation

backends, naive loops using uBLAS vectors and contractions of tensors using the TACO library. The

proceeding results include TT-decomposed occupation factors contracted directly in the network

evaluation of the IMSRG(2) flow terms. Figure 5.12 shows the speedup of the TACO implementa-

tion versus the naive loops implementation. Again, the tensor library contraction combined with

TT-decomposed occupation factors softens the prefactor on the IMSRG(2) computational scaling,

allowing us to reach larger basis sizes. The results in Figure 5.12 reflect implementations that are

not multithreaded; however, we expect the results would be similar provided both implementations

are optimally multithreaded.
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CHAPTER 6

OPTIMAL REFERENCE STATE ENSEMBLES FOR THE IN-MEDIUM SIMILARITY
RENORMALIZATION GROUP

6.1 Introduction

In this chapter, we focus on the main methodological improvement to the IMSRG framework

that is developed in this thesis. In general, the implementation of any RG method begins with

the choice of an operator basis. If we can work in a complete basis, we can capture the RG flow

exactly (for example, SRG for finite-size matrices). In most applications, and in particular the

IMSRG(2), we only work with truncated bases due to the complexity of tracking induced operators.

For example, in the IMSRG(2) we work with a finite set of normal ordered, second-quantized

operators.

The RG flow comes with built in diagnostics—it can tell us which operators are relevant

or irrelevant, and stabilities or divergences can be a sign of truncations that are too severe, or

truncations that violate symmetries we would like or need to preserve. The response of the RG flow

to the choice of the operator basis impacts the accuracy with which we can describe the observables

of interest.

Here, we will explore the use of ensembles of reference states to enhance the robustness of the

IMSRG operator basis, and to control truncation errors. We show that the use of an ensemble serves

to “inform” the IMSRG flow about the excited states of the system, so that the RG improvement of

the Hamiltonian is not merely targeted to the description of the ground state alone. Similar ideas

have been explored in the context of quantum chemistry, with success [4, 7].

6.2 Truncation Error in the IMSRG

In the IMSRG, the unitarity of the transformation provides a key diagonstic, which is that

observables from exact many-body calculations should be invariant. We have shown in Equation

2.30 that the product of two normal-ordered 𝑀-body and 𝑁-body operators produces a sum of up

to 𝑀 + 𝑁-body operators. The commutator in the IMSRG flow equation, Equation 3.4, produces a
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flowing operator of total rank rank([) + rank(𝐻) − 1. In the IMSRG(2) truncation, we disregard

operators for three or more particles which are induced by the commutator. The error in this

truncation scheme manifests as a violation of unitarity in the IMSRG transformation, which is

evident from the non-preservation of the flowing eigenvalue spectrum that we would obtain in an

exact diagonalization. In cases where this loss of unitarity is especially egregious, the assumption

is that the terms we truncated from the operator basis are important for maintaining a stable IMSRG

flow for that system configuration.

Increasing the truncation level to keep three and higher 𝐴-body operators is not feasible in

realistic applications of the IMSRG, because the memory requirements (𝑂 (𝑁4) in the IMSRG(2)

versus𝑂 (𝑁6) in the IMSRG(3)) and computational costs (𝑂 (𝑁6) in the IMSRG(2) versus𝑂 (𝑁9) in

the IMSRG(3)) become prohibitive. The solution we propose in this Chapter is to recover physical

information lost due to truncation by normal-ordering the IMSRG Hamiltonian with respect to an

ensemble of Slater determinant reference states, thereby tuning the chosen operator basis in which

we implement the IMSRG(2) flow. We will show that the impact on the cost of the IMSRG(2) flow

is minimal. There is a non-negligible cost to the “mixing” optimization procedure, but we will

show that improvements to the IMSRG result can still be obtained using less-than-optimal mixing

parameters.

6.3 Formulation of the Reference State Ensemble

In the reference state ensemble scheme, the many-body Hamiltonian is normal-ordered with

respect to an ensemble of orthonormal Slater determinant configurations, {Φ1, . . . ,Φ𝑃}. We

choose a reference state 𝜓, which is a mixture of the Slater determinant configurations such that

|𝜓⟩ =
𝑃∑︁
𝑖=1

𝑐𝑖 |Φ𝑖⟩ . (6.1)

The density matrix �̂� (dropping explicit indices for brevity) is

�̂� = |𝜓⟩ ⟨𝜓 | =
∑︁
𝑖

𝑐∗𝑖 𝑐 𝑗 |Φ𝑖⟩ ⟨Φ𝑖 | =
∑︁
𝑖

𝑝𝑖 |Φ𝑖⟩ ⟨Φ𝑖 | . (6.2)
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The trace tr �̂� is simply the sum of the diagonal terms, i.e.

tr �̂� =
∑︁
𝑖

𝑝𝑖 ⟨Φ𝑖 |Φ𝑖⟩ =
∑︁
𝑖

𝑝𝑖 (6.3)

Expectation values of operators 𝑂 can be computed as traces in the density matrix, tr �̂�𝑂. Consider

the expectation value of operator pair 𝑎†𝑝𝑎𝑞, which generates the one-body density matrix, in 𝜓:

⟨𝜓 |𝑎†𝑝𝑎𝑞 |𝜓⟩ = tr �̂�𝑎†𝑝𝑎𝑞 = tr

(∑︁
𝑖

𝑝𝑖 |Φ𝑖⟩ ⟨Φ𝑖 | 𝑎†𝑝𝑎𝑞

)
=

∑︁
𝑖

𝑝𝑖 ⟨Φ𝑖 |𝑎†𝑝𝑎𝑞 |Φ𝑖⟩

=
∑︁
𝑖

𝑝𝑖𝜌𝑖,

(6.4)

where the factor 𝜌𝑖 is the one-body density matrix corresponding to reference state configuration

|Φ𝑖⟩. Thus, we have shown that the reference state ensemble is a simple sum of one-body density

matrices, in a basis of Slater determinants states, with terms weighted by the probability in which

they might accurately represent the state targeted for decoupling by the IMSRG (e.g., the ground

state). Note that for a “pure”, correlated state |Ψ⟩, the density operator �̂� = |Ψ⟩ ⟨Ψ| would generate

additional terms in the expectation value that are missing in the “mixed” state 𝜓.

In this formulation, the occupation of a particular state in the reference ensemble becomes

fractional (according to 𝑝𝑖) instead of an integer in the single Slater determinant case as in Equation

2.27. This implies that the two-body and three-body density matrices will not factor completely

into one-body density matrices, which generates nonzero IDMs in Equations 2.34 and 2.35.

In our reference ensemble scheme, the irreducible terms do not encode pure correlations in a

quantum mechanical sense, because they do not result from the “quantum interference” terms that

are present within a pure wave function density operator. Since the reference ensemble consists

of a simple mixture of Slater determinants, we may interpret the irreducible terms as providing

“statistical” correlation information, in a effort to simulate a truly correlated reference state.

Concretely, the one-body density matrix corresponding to the reference state ensemble reads

𝝆(E) =
𝑃∑︁
𝑖

𝑝𝑖𝝆𝑖, (6.5)
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where 𝑃 is the total number of probabilities in which we expand the reference, and each 𝝆𝑖 corre-

sponds to the irreducible one-body density matrix for a particular Slater determinant configuration,

which is fixed by the number of hole and particle states in the single particle basis. The total number

of Slater determinant configurations available to the ensemble is given by the binomial coefficient

𝑃 = 𝐶 (𝑁, 𝑁ℎ), where 𝑁 is the number of single particle states and 𝑁ℎ is the number of hole states.

States which are “excluded” from the ensemble correspond to weights 𝑝𝑖 = 0. In order for particle

number to be conserved, we assert that the probabilities are normalized such that

𝑃∑︁
𝑖

𝑝𝑖 = 1. (6.6)

The reference state ensemble adds two additional degrees of freedom to the IMSRG flow, namely

the size of the ensemble and the distribution of probabilities across the ensemble. Thus, we may

optimize the ensemble size and weighting scheme in order to minimize the truncation error of the

IMSRG(2).

Truncation error is difficult to measure without an exact method to compare with the IMSRG(2)

result. Fortunately, the exact spectrum is accessible for the P3H Hamiltonian (see Chapter 4.1),

which we employ to study the efficacy of the reference state ensemble.

6.4 Ensemble Optimization Scheme

As a proof-of-concept, we demonstrate one technique which can be used to optimize the prob-

ability weights that parameterize the reference state ensemble when an exact method is tractable

for comparison. In Algorithm 6.1, we define a residual as the difference between the exact eigen-

spectrum and the IMSRG(2) eigenspectrum, computed from a particular reference state ensemble

characterized by the probability weight vector p. We perform a least-squares minimization of this

residual under variations of p. Of course, this optimization scheme is not practical in a realistic

application, where the IMSRG(2) may be expensive to complete (IMSRG emulator techniques may

assist in reducing the expense, see Chapter 7.3) or the exact eigenspectrum may not be accessible

due to the exponential cost of determining it.
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Algorithm 6.1 Pseudocode implementation which demonstrates the minimization process, for
which the residual involves a complete IMSRG(2) flow as well as a full configuration interaction
(FCI) computation to obtain the eigenvalues of the vacuum Hamiltonian.

function residual(p, y,M, 𝑚)
p← p/sum(p) ⊲ enforce constraint

∑
𝑖 𝑝𝑖 = 1

z = Mp ⊲ compute reference state
x = R(z, 𝛿, 𝑔, 𝑏) ⊲ compute eigenvalues from 𝐻 (∞) return x[1 : 𝑚] − y[1 : 𝑚]

end function
initialize reference ensemble matrix M
initialize p
y = F (𝛿, 𝑔, 𝑏) ⊲ compute eigenvalues from FCI
repeat p← lsq (residual(p, y, 𝑚))
until residual(p, y,M, 𝑚) < tolerance

6.5 Regularization of Generator Divergences

Let us consider the IMSRG(2) flow of a P3H Hamiltonian (see Chapter 4.1) with a strong pairing

strength, 𝑔 = 2.0. Let 𝑏 = 0.0. Figure 6.1 illustrates an IMSRG(2) flow of this Hamiltonian. The

diagonal matrix elements, which should converge to the true eigenspectrum as the IMSRG(2)

flows, diverge from this destination and cross each other unpredictably. This is an issue of the

White generator for states which are close to the Fermi surface; the generator, which depends on

denominators of energy differences, blows up uncontrollably when the energy differences are small

(see Chapter 3.4.2). We note that although this behavior is most obvious with the White generator

because of the explicit energy denominators, this issue may persist in other generator forms due to

the truncation of induced terms. In this example, the pairing strength squeezes the energy states

close together such that the IMSRG(2) flow cannot sufficiently decouple the target ground state

from excited states, and the flow fails.

In the proceeding results, we attempt to correct this failure by inserting information about the

excitations of the system into the IMSRG(2) through the use of an ensemble of Slater determinants.

While the use of fractional occupation factors implies that two-body and higher irreducible density

matrices (IDMs) introduced in Chapter 2.6 are nonzero, as discussed above, we truncate terms

containing the IDMs for now, and refer to this ensemble evaluation scheme as fractional occupation

only, or FOO.
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Figure 6.1 Diagonal matrix elements of a flowing P3H Hamiltonian with 8 single particle states. The dashed
horizontal lines to the right represent the true eigenspectrum for this Hamiltonian, obtained through exact
diagonalization (see Chapter 2.10). The longest dashed line represents the true ground state.

Figure 6.2 demonstrates the effect of the FOO ensemble scheme: We are able to cure the

divergent behavior in the IMSRG(2) flow for strong pairing 𝑔 = 2.0, and the ground state energy

converges to the desired result; in addition, many of the unpredictable crossings in excited states

have been mitigated. One disadvantage we can immediately note from this process is that the

dynamical range has doubled compared to Figure 6.1, meaning that more computational effort

is required to achieve the same result (without mentioning the computational effort required for

optimization).

The spectrum of the flowing Hamiltonian in the FOO scheme is not necessarily invariant under

changes of 𝑠 (and unitarity is still violated). However, the extent of the unitarity violation is

improved compared to the single reference case. Figure 6.3 compares the spectrum evolution

according to the single reference flow versus the FOO scheme flow.

6.6 Improving the Eigenspectrum

In this section, we demonstrate the complexity in improving all eigenvalues and eigenstates

of the IMSRG(2) evolved Hamiltonian simultaneously, using the FOO ensemble scheme from

the previous section. “Improvement” in the spectrum is interpreted as the preservation of the
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Figure 6.4 The vertical axis is the difference between the IMSRG(2) energy and the FCI energy for each
eigenstate. The horizontal axis 𝑥1 is the mixing strength, which controls the 2-state ensemble dependence
on the first excited fully paired SD configuration.

eigenvalues throughout the flow, which assesses the unitarity of the IMSRG transformation.

We have shown in Figure 6.2 that the reference state ensemble scheme “regularizes” the flow of

matrix elements; compared to the extreme case in Figure 6.1, this accounts for an improvement in

preservation of the eigenspectrum (especially, the ground state) which we observed in Figure 6.3.

Let us systematically study how a 2-state FOO ensemble changes the eigenspectrum preservation

for 6 fully paired1 eigenstates of the IMSRG(2) evolved Hamiltonian. The 2-state FOO ensemble,

in this case, reads

𝝆(E−2) = (1 − 𝑥1)𝝆0 + 𝑥1𝝆1, (6.7)

where 𝑥1 is a fraction which controls the proportion of the ground state SD configuration compared

1For the P3H Hamiltonian in question, the pair-breaking contribution is zero. Thus, we worry only about the
accuracy of the eigenstates accessed by the pairing contribution.
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to the first excited state SD configuration. Note that when 𝑥1 = 0, we recover the usual single SD

reference state. In the FOO ensemble scheme, the weights (1 − 𝑥1), 𝑥1 directly affect the fractional

values in the occupation factors, and nothing else. Figure 6.4 shows the error curves for each fully

paired eigenstate, for the same Hamiltonian as in Figures 6.1 and 6.2 using the 2-state reference

ensemble. The solid horizontal line in each plot denotes the zero crossing, where the error in the

energy is zero.

These plots demonstrate that, for a single mixing parameter, there is no mixing for which

the total error in the IMSRG(2) eigenspectrum is zero. This result suggests that we must make

concessions based on the goal of the reference state ensemble scheme; tuning the ensemble to

improve a single eigenstate, e.g. the ground state, does not necessarily guarantee all eigenstates

will be improved directly proportionally. In the 2-state ensemble, there is maybe no good reason to

expect improvements for high-lying excited states if we only use ground-state and first-excited-state

Slater determinant configurations. Seeking improvement in high-lying excitations motivates the

use of more basis configurations in the ensemble, at the cost of a more complicated multi-parameter

optimization problem.

Figure 6.7 also displays a sweeping range of control over error in every IMSRG(2) eigenstate

for only a single mixing parameter in a 2-state ensemble. The 2-state ensemble begins to see

improvement over the single reference beyond around 𝑥1 = 0.1, before which we observe a steep

increase in error around 𝑥1 = 0.08. In some way, this singularity reveals the topology of the

optimization problem. The steep increase shows how much we must weight the addition of the

excited state in order to decouple the ensemble result from the single reference result, such that

the spectrum no longer diverges. These results suggest that we may be able to alleviate particular

crossings with a simple 2-state ensemble.

6.7 Ensemble Consistency with Non-Targeted Observables

In the previous sections, we have shown that reference ensembles are capable of improving the

IMSRG(2) flow of the Hamiltonian—in other words, the reference ensemble can reduce the error

in energy eigenvalues, or even improve the entire spectrum robustly. However, most of the time,
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we wish to also compute the expectation values of observables other than the energies, hence we

must ensure that the use of the reference state ensemble does not spoil their description. We may

evolve any additional observable 𝑂 alongside the Hamiltonian according to Equation 3.4 [2],

𝑑𝑂 (𝑠)
𝑑𝑠

= [[(𝑠), 𝑂 (𝑠)] , (6.8)

where [(𝑠) is the IMSRG generator constructed from the Hamiltonian. Since the space for storing

the full flow history of [ is prohibitive in realistic applications, we must concatenate the operator

flow equations in the same normal-ordered operator basis as the Hamiltonian to the Hamiltonian

ODE system. Concatenation of each additional operator implies the addition of another full-size

version of the ODE system, which restricts the simultaneous evolution to only a couple observables

in practice. One solution for this issue is the Magnus [5, 1] formulation of the IMSRG demonstrated

by Morris et al. [6] (also see Hergert et al. [2] and Chapter 10 of Hjorth-Jensen et al. [3]). The

Magnus method casts the unitary transformation to a true exponential, 𝑈 (𝑠) = 𝑒Ω(𝑠) , and then

reformulates the flow equations to evolve the Magnus operator Ω(𝑠) instead of the Hamiltonian

itself. Future work will implement in the reference state ensemble in the Magnus-IMSRG, but has

not been implemented for the results in this study.

One disadvantage of the rather abstract P3H toy model is the lack of compelling observables

with which to gather relevant data. The most interesting candidate beside 𝐻 itself is the total spin-

squared operator 𝑆2. We will explore how the use of a reference state ensemble that is optimized

for 𝐻 impacts the expectation value ⟨𝑆2⟩; in this way, we show that the reference ensemble flow is

“safe” in that important physical information in simultaneous observables is not destroyed.

The second-quantized spin-squared operator 𝑆2 reads

𝑆2 =
∑︁
𝑝𝑞

⟨𝑝 |𝑠2 |𝑞⟩ 𝑎†𝑝𝑎𝑞

+ 1
4

∑︁
𝑝𝑞𝑟𝑠

⟨𝑝𝑞 |𝑠(1) · 𝑠(2) |𝑟𝑠⟩A 𝑎†𝑝𝑎
†
𝑞𝑎𝑠𝑎𝑟 .

(6.9)

The 𝑆2 matrix elements are constructed in the single particle basis states of the P3H model, with

quantum numbers 𝑝, which denotes the energy level, and 𝜎𝑝, which denotes the spin direction of
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the particle at level 𝑝. The one-body matrix elements of 𝑆2, in units of ℏ2, read

⟨(𝑝, 𝜎𝑝) |𝑠2 | (𝑞, 𝜎𝑞)⟩ =
3
4
𝛿𝑝𝑞𝛿𝜎𝑝𝜎𝑞

. (6.10)

Using ladder operators 𝑠− and 𝑠+, the two-body part of the operator can be expressed as

𝑠(1) · 𝑠(2) = 1
2

(
𝑠
(1)
+ 𝑠(2)− + 𝑠(1)− 𝑠

(2)
+

)
+ 𝑠(1)𝑧 𝑠

(2)
𝑧 . (6.11)

The ladder operator terms in Equation 6.11 correspond to a mutual “spin-flipping” interaction,

whereas the spin projection 𝑠
(1)
𝑧 𝑠
(2)
𝑧 term is structurally similar to the one-body matrix element.

Introducing the two-body antisymmetrized product state

| (𝑝, 𝜎𝑝) (𝑞, 𝜎𝑞)⟩A =
1
√

2
( | (𝑝, 𝜎𝑝) (𝑞, 𝜎𝑞)⟩ − |(𝑞, 𝜎𝑞) (𝑝, 𝜎𝑝)⟩), (6.12)

we can compute the two-body matrix element corresponding to the 𝑠(1) · 𝑠(2) term in Equation 6.9.

In Figure 6.5 we present the evolution of the expectation value ⟨𝑆2⟩ in the ground eigenstate

of the Hamiltonian, compared to evolution of the ground state energy. The vertical axis measures

the observables’ difference from the starting point, so that energy and ⟨𝑆2⟩ can be plotted to the

same scale. The horizontal axis represents the 𝑠 evolution scale. In panels 𝐴 and 𝐵, we have

normal-ordered both operators with respect to the single, standard SD ground state configuration.

Note that in these cases, the 𝑆2 matrix maps to zero because the total spin is zero for the SD ground

state configuration. In this way, ⟨𝑆2⟩ is trivially conserved. The energy behaves as expected, in

that the strongly interacting Hamiltonian in panel 𝐵 results in a divergent flow.

In panel 𝐶, we have normal-ordered both operators with respect to an optimized ensemble.

Now that there are 𝑆 ≠ 0 SD configurations mixed into the ensemble, we see that ⟨𝑆2⟩ is no

longer conserved. However, we see that the evolution of ⟨𝑆2⟩ closely resembles that of the energy,

meaning that the character of the 𝑆2 has been preserved under the reference ensemble flow. This

study suggests that the reference state ensemble is safely preserves simultaneous observables in the

IMSRG flow.

6.8 Using Exact Eigenstates as References

We conclude the discussion in this chapter by considering the impact of using an exact eigenstate

of 𝐻 for setting up the normal ordered operator basis for the IMSRG. In this case, we expect the
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Figure 6.5 Evolution of ⟨𝑆2⟩ and the ground state energy 𝐸 (𝑠) for two P3H model Hamiltonians and two
reference schemes. The vertical axis measures the change in the zero-body part of the evolving operator
from the starting point 𝑠 = 0, while the horizontal axis plots the 𝑠 evolution range. Panel 𝐴 features a
weakly interacting P3H Hamiltonian where energy converges, according to a single standard ground state
SD configuration reference. Panel 𝐵 features a strongly interacting P3H Hamiltonian where energy diverges,
according to a single standard ground state SD configuration reference. Panel𝐶 features a strongly interacting
P3H Hamiltonian where energy converges, according to an optimized ensemble reference.

zero-body part of the operator to be identical to the eigenvalue associated with the reference state,

and it should be completely insensitive to the IMSRG truncation.

Since the eigenstate is correlated, the IDMs will be non-zero, and we will perform the evolution

in the MR-IMSRG(2) scheme (see Appendix B). We will use generalized form of the White-ArcTan

generator (Chapter 3.4.2), as well as the Brillouin generator (Chapter 3.4.3), to generate the flow.

In Figure 6.6, we show the eigenvalue flow corresponding to the lowest four eigenstates of

a weak-pairing P3H Hamiltonian and strong-pairing/weak-pair-breaking P3H Hamiltonian. Note

that in both cases, the first and second excited states are degenerate in energy. The color coding
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indicates which exact eigenstate was used to normal order 𝐻. In the weak-pairing case, we find that

all eigenstates remain invariant under evolution if we use the associated occupations and IDMs for

constructing the normal ordered operator basis, and we find the expected lack of sensitivity to the

MR-IMSRG truncation. Interestingly, the (fully paired) ground state remains invariant regardless

of the exact eigenstate we use for the normal ordering. The third excited state, which is fully paired

as well, also remains invariant if we use any of the excited states to construct the normal ordered

operator basis, while a basis built from the ground state is not able to capture the evolution of this

state completely. For the first and second excited states, evolving with the fully paired references

only leads to minor deviations from the exact eigenvalue.

In the strong-pairing/weak-pair-breaking case, we find that the flow breaks down for all cases

except in the case where Hamiltonian is normal-ordered with respect to the ground state. This

suggests that for strongly interacting systems, a single exact eigenstate does not provide enough

information to account for these induced terms which have been truncated. Note especially the

“closeness” of the second and third energies in the strongly interacting P3H Hamiltonian–the

eigenvalues in these state seem to be switching places in a level crossing.

In Figure 6.7, we systematically study how truncations of terms depending on the IDMs affect

the unitarity of the ground state eigenvalue’s evolution. Here, we examine the flow generated by

the Brillouin generator and normal order with respect to the exact ground state. In both cases, the

inclusion of the fractional occupation numbers alone yields a converged flow, but the deviation

from the exact eigenvalue can be substantial, and in the strongly interacting case it is difficult to

tell whether the evolution is completely leveled off. In the weakly-interacting case, inclusion of the

two-body IDM in the Brillouin generator greatly reduces the violation of unitarity, and inclusion

of the three-body IDM guarantees the invariance of the eigenvalue.

In the strongly-interacting case, the inclusion of the two-body IDM terms on top of the fractional

occupation numbers actually causes the flow to “diverge”—since the Brillouin generator is effec-

tively the gradient of the energy under unitary variations, a likely explanation is that we overshoot

the stationary point because the gradient is unbalanced. The inclusion of the three-body IDM
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Figure 6.6 Evolution of the lowest four eigenvalues in two P3H models, varying the exact eigenstate against
which the Hamiltonian has been normal-ordered. The flow was evaluated using a White-ArcTan generator.
In the left pane, we evolve a weak pairing Hamiltonian with no pair-breaking. In the right pane, we evolve a
strong pairing Hamiltonian with weak pair-breaking.

fixes this issue, hence the takeaway is that IDM truncations in the generator need to be carefully

considered. Since the IDMs encode correlations in the reference state that are coupling to the

correlations treated by the MR-IMSRG during the evolution, it is not surprising that the balance of

the two- and three-body IDMs is more delicate in the strongly interacting case.

6.9 Outlook

In this chapter, we have presented the reference state ensemble scheme for reducing truncation

error in the IMSRG(2) flow. We have shown that by introducing information about potential

excitations of the system into the IMSRG(2) flow via the reference state ensemble, we can reduce the

violation of the transformation’s unitarity due to truncations. This is evident from the improvement

in the preservation of the spectrum of evolved P3H Hamiltonians which have been normal-ordered

with respect to reference ensembles. We have also shown that the use of reference ensembles that

are optimized for the Hamiltonian does not seem to significantly distort observables which are

evolved alongside the Hamiltonian, although this matter will have to be revisited in more realistic

applications.
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Figure 6.7 Flow of the ground state eigenvalue when normal ordering with respect to the ground state for
two P3H Hamiltonians, with no-pairing breaking. The left pane is a weak pairing case, where the right pane
is the strong pairing case. The truncation level of the IDMs in the generator and the MR-IMSRG(2) flow has
been varied.

In the future, we hope to improve the optimization process in Algorithm 6.1 in several ways.

For one, the exact spectrum will be inaccessible in applications to realistic systems, so we will

need to to conceive of different characteristics for the loss of unitary in observables, e.g., partial

traces. Or, perhaps, we could implement a neural network optimization strategy to “learn” the best

ensemble mixing from a large set of training points. Of course, this method is also constrained by

the computational effort for performing the full (MR-)IMSRG evolutions, as well as the richness

of viable evolutions in the parameter surface spanned by the mixing parameters. We may be able

to leverage the emulator techniques discussed in Chapter 7 for generating comprehensive training

sets for reference ensemble optimization.
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CHAPTER 7

KOOPMAN OPERATOR FOR THE IN-MEDIUM SIMILARITY RENORMALIZATION
GROUP

7.1 Introduction

In this chapter, we present the results of several algorithms developed from Koopman operator

approximation techniques, namely the Dynamic Mode Decomposition (DMD), to emulate the

solution to the IMSRG(2) flow (Equation 3.18). There are two algorithms which work in tandem

to generate a complete emulator to the parametric IMSRG problem (i.e. emulate IMSRG solution

varying couplings): 1) a standard DMD formula, which we show can emulate the solution to a

particular IMSRG(2) flow [4, 3] and 2) an algorithm which interpolates DMD operators across

a parametric coupling surface which characterizes the model Hamiltonian we wish to evolve via

IMSRG(2) [6].

7.2 The Koopman Operator

The Koopman operator [7] is an infinite-dimensional linear operator which acts on a mea-

surement subspace of a nonlinear dynamical system. The system itself may be finite or infinite-

dimensional. The spectral decomposition of this operator characterizes the behavior of the nonlinear

dynamical system [3, 4]. In principle, the measurement subspace is continuous in time; however,

for our applications we concern ourselves with the discrete-time Koopman operator which acts on

a discrete measurement subspace.

Consider a measurement function 𝑔 which evaluates a system 𝑥, where 𝑥 is interpreted as a

vector of state variables, at some point in time 𝑥𝑘 . Forward time-steps in the system are governed

by a flow map F, which propagates the system forward in time such that,

F(𝑥𝑘 ) = 𝑥𝑘+1. (7.1)

The Koopman operator is defined by the composition of 𝑔 and F [4],

K𝑔 = 𝑔 ◦ F, (7.2)
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which shows that the Koopman operator propagates the measurement function forward in time, so

that [4],

K𝑔(𝑥𝑘 ) = 𝑔(𝐹 (𝑥𝑘 )) = 𝑔(𝑥𝑘+1). (7.3)

In other words, the Koopman operator characterizes the flow map F, under which 𝑥 evolves, via

measurements of the system by 𝑔. In the eigenbasis of K [4],

K𝜙(𝑥𝑘 ) = _𝜙(𝑥𝑘 ) = 𝜙(𝑥𝑘+1), (7.4)

which shows that evaluation of the Koopman eigenfunctions characterize the dynamics of the

system. In other words, the dynamics of the nonlinear system are fully captured by an infinite-

dimensional linear operator (the Koopman operator) that acts on the space of measurements of the

system.

Since the Koopman operator is infinite-dimensional, we must find techniques which can ap-

proximate the Koopman operator in a finite dimension. The technique which we use in this chapter

is called Dynamic Mode Decomposition, or DMD.

7.3 Dynamic Mode Decomposition for IMSRG

The DMD is a finite-dimensional, finite-measurement, approximation to the discrete Koopman

operator for a nonlinear dynamical system. It was originally developed by Schmid [12] in the

context of fluid dynamics. The DMD is formulated as the best-fit linear operator which connects

successive, time-ordered measurements of the target system [12, 11]; as a result, SVD is most often

the technique used to solve for the DMD operator, due to its computationally efficient scaling and

flexibility in low-rank truncated spaces.

The DMD begins with 𝑁 successive observations from the evolving dynamical system, orga-

nized into offset data matrices 𝑋 and 𝑋′, where 𝑋′ is one step forward relative to 𝑋 . In matrix

form,

𝑋 =


| |

𝑥1 · · · 𝑥𝑁−1

| |


; 𝑋′ =


| |

𝑥2 · · · 𝑥𝑁

| |


. (7.5)

83



Algorithm 7.1 Pseudocode implementation which demonstrates the standard algorithm for DMD.
collect 𝑁 observations from evolving dynamical system, taking steps of fixed width 𝑑𝑡

organize offset matrices 𝑋 and 𝑋′, with shapes 𝑀 × 𝑁 − 1
solve 𝑋† (via SVD)
𝐴 = 𝑋′𝑋†

compute eigendecomposition 𝐴Φ = ΛΦ

compute DMD mode amplitudes 𝑏 = Φ†𝑥0
expand dynamical state 𝑥𝑘 = ΦΛ𝑘−1𝑏 ⊲ for 𝑘 > 0,

For simplicity, we assert that each observation be taken at a regular intervals 𝑑𝑡 in the dynamical

variable. The DMD operator 𝐴 shifts 𝑋 one step forward in time (or whatever the dynamical

variable may be), i.e.

𝐴𝑋 = 𝑋′. (7.6)

We may proceed to solve for the “best-fit” 𝐴 in a least-squares sense, obtaining

𝐴 = 𝑋′𝑋†, (7.7)

where † denotes the Moore-Penrose inverse (pseudoinverse) of 𝑋 . The Moore-Penrose inverse

minimizes the L2 loss function ∥𝑋′ − 𝐴𝑋 ∥2 such that

𝑋† = (𝑋𝑇𝑋)−1𝑋𝑇 , (7.8)

where we must have that (𝑋𝑇𝑋) is invertible.

Standard Dynamic Mode Decomposition The standard DMD algorithm is written, in pseu-

docode, in Algorithm 7.1. In the final line of Algorithm 7.1, the state vector 𝑥𝑘 represents the

state of the dynamical system at step 𝑘 , where 𝑘 = 𝑡𝑘/𝑑𝑡. The DMD eigenfunctions, or modes, are

denoted Φ and the DMD eigenvalues are denoted Λ. The vector 𝑥0 represents the initial state of the

dynamical system; the product Φ†𝑥0, usually denoted 𝑏, is the DMD amplitudes which represent

the DMD eigenfunctions evaluated in the initial conditions.

Algorithm 7.1 explains how the dynamical system is expanded in DMD modes, according to

the DMD expansion [8, 3, 4, 12], written

𝑥𝑘 = ΦΛ𝑘−1𝑏, 𝑘 > 0. (7.9)
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We may translate this expansion to continuous time by converting the diagonal DMD eigenvalue

matrix Λ to its continuous analog Ω, with diagonal elements 𝜔𝑖 = ln (_𝑖)/𝑑𝑡, so that the continuous

expansion reads [4],

𝑥(𝑡) = Φ exp (Ω𝑡)𝑏. (7.10)

In order to fully characterize the dynamical system, the necessary information that must be extracted

from DMD are the modes Φ and the eigenvalues Λ. Adjacent objects, such as the amplitudes 𝑏,

are inferred or directly computed from Φ and Λ. Thus, we refer to a DMD decomposition of a

dynamical system as the pair (Φ,Λ).

Projected Dynamic Mode Decomposition One prohibiting issue with the standard DMD al-

gorithm is that the memory and computational cost scales heavily with the number of dynamical

variables 𝑀 . In our case, these would be the coefficients of the IMSRG(2) Hamiltonian. The DMD

operator in Algorithm 7.1 is a dense matrix with shape 𝑀 × 𝑀; for a typical nuclear many-body

calculation using IMSRG(2), 𝑀 might be on the order 106 or greater. The viability of the standard

DMD algorithm is quickly challenged for practical uses of the IMSRG(2).

Instead, we leverage the flexibility of the SVD to solve the projected DMD, which solves for the

DMD operator in a reduced measurement subspace. Beginning with an SVD on the data matrix 𝑋 ,

𝑋 ≈ 𝑈Σ𝑉∗, (7.11)

we can truncate the number of singular values used in the reconstruction at 𝑟 while minimizing

the reconstruction error, assuming that the singular values are exponentially decaying [8]. The

truncated SVD expression then reads

𝑋trunc ≈ 𝑈𝑟Σ𝑟𝑉
∗
𝑟 . (7.12)

Note that the shapes of 𝑋 and 𝑋trunc are equivalent, so we assume that 𝑋 ≈ 𝑋trunc up to some

negligible truncation error (due to the exponentially decaying singular values), which is controllable

by choosing an appropriate 𝑟. Then we may interpret the matrix 𝑈𝑟 as a transformation from the

full measurement space to the reduced measurement subspace.
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The reduced DMD operator is the projection of the full DMD operator onto the reduced SVD

modes [8],

𝐴𝑟 = 𝑈∗𝑟 𝐴𝑈𝑟 , (7.13)

where 𝐴𝑟 is the 𝑟×𝑟 projected DMD operator onto the reduced space. From here, we may substitute

the expression for the full DMD operator 𝐴, Equation 7.7, as well as the SVD on 𝑋 , to arrive at

𝐴𝑟 = 𝑈∗𝑟 (𝑋′𝑋†)𝑈𝑟

= 𝑈∗𝑟 𝑋
′(𝑈𝑟Σ𝑟𝑉

∗
𝑟 )†𝑈𝑟

= 𝑈∗𝑟 𝑋
′𝑉𝑟Σ

−1
𝑟 .

(7.14)

The reduced DMD operator 𝐴𝑟 and the full DMD operator 𝐴 necessarily share up to 𝑟 eigen-

values. Thus, the eigendecomposition of 𝐴𝑟 reads

𝐴𝑟𝑊 = 𝑊Λ. (7.15)

Tu et al. [13] showed that the full DMD eigenvectors Φ can be recovered from the reduced DMD

eigenvectors 𝑊 via

Φ = 𝑋′𝑉𝑟Σ
−1
𝑟 𝑊. (7.16)

At this point, the full DMD decomposition (Φ,Λ) has been recovered from the reduced measurement

subspace. The dynamical system can then be expanded in the DMD modes according to Equations

7.9 or 7.10.

Algorithm 7.2 summarizes the procedure for computing a reduced DMD decomposition. Note

that the computational effort for computing the eigendecomposition of the DMD operator has been

significantly reduced by solving for the reduced operator 𝐴𝑟 ; the projection softens the scaling

from 𝑂 (𝑀3) in the full measurement space, to 𝑂 (𝑟3) in the reduced measurement subspace, where

𝑟 ≪ 𝑀 .

7.4 Emulating the IMSRG Flow

In this section, we justify how the DMD can be used to “learn” the unitary transformation

which propagates the IMSRG flow. We have studied only IMSRG up to 2-body truncations, i.e.

IMSRG(2), although we emphasize that the emulation procedure is consistent for IMSRG(𝑁).
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Algorithm 7.2 Pseudocode implementation which demonstrates the algorithm for projected DMD.
collect 𝑁 observations from evolving dynamical system, at fixed width 𝑑𝑡

organize offset matrices 𝑋 and 𝑋′, with shapes 𝑀 × 𝑁 − 1
compute truncated SVD on 𝑋 ≈ 𝑈𝑟Σ𝑟𝑉

∗
𝑟

compute 𝐴𝑟 = 𝑈∗𝑟 𝑋
′𝑉𝑟Σ−1

𝑟

compute eigendecomposition 𝐴𝑟𝑊 = 𝑊Λ

project back to full space Φ = 𝑋′𝑉𝑟Σ−1
𝑟 𝑊 or Φ = 𝑈𝑟𝑊

compute DMD mode amplitudes 𝑏 = Φ†𝑥0
expand dynamical state 𝑥𝑘 = ΦΛ𝑘−1𝑏 ⊲ for 𝑘 > 0,

In Chapter 3.2, Equation 3.1, we expressed the continuous, unitary, 𝑠-dependent transformation

𝑈 (𝑠) as the transformation which drives the target Hamiltonian toward a desired form (e.g., to the

minimal decoupling of an eigenvalue), and in the standard IMSRG approach, we “solve” for this

transformation implicitly by propagating the system of flow equations for the Hamiltonian. We can

also think of the transformation in the form

𝐻 (𝑠) = U(𝑠)𝐻 (0), (7.17)

whereU(𝑠) is an unknown “super operator” that acts on the algebra of second-quantized operators,

and encodes the desired continuous unitary transformation. The expression for the DMD expansion

in Equation 7.10 provides a description of exactly this form. Replacing 𝑥 → 𝐻 so that the

coefficients of 𝐻 (𝑠) becomes the state variables tracked in 𝑥, we can expressU(𝑠) in terms of the

Koopman modes and frequencies as

𝐻 (𝑠) = U(𝑠)𝐻 (0) = {Φ exp (Ω𝑡)Φ†}𝐻 (0) . (7.18)

Note that the product {Φ exp (Ω𝑡)Φ†} is unitary, provided that the columns of Φ are sufficiently

linearly independent. We may take for granted that this transformation provides the desired evolution

behavior, simply because the transformation is informed by measurement data of the IMSRG flow.

Of course, this assumption is predicated on good measurement data, meaning the IMSRG flow

being measured is well-behaved to begin with. In this way, we consider the DMD a data-driven,

non-intrusive emulator for the IMSRG—“data-driven” in the sense that the DMD is built from, or

informed by, data measured from the evolving system, and “non-intrusive” in the sense that DMD

does not modify the IMSRG method itself.
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Figure 7.1 DMD mode dynamics in 𝑠, for a rank-6 DMD expansion of a strongly interacting P3H model.
Each curve correspond to exponentials 𝑒𝜔1 𝑠 through 𝑒𝜔6 𝑠 in Equation 7.19, ordered from slowest to fastest
frequency. Note that one mode in particular remains approximately constant in 𝑠.

Equation 7.18 reveals an interesting feature of DMD emulation in the IMSRG context. Prac-

tical implementation of DMD emulation will treat 𝐻 (𝑠) as a one-dimensional vector which

contains all three pieces of the normal-ordered operator in the IMSRG(2) truncation, 𝐻 (𝑠) =

[𝐸 (𝑠), 𝑓 (𝑠), Γ(𝑠)]𝑇 . In this way, the rows of Φ correspond to the elements of the vector 𝐻 (𝑠). For

example, we need only the first row of Φ to reconstruct the flow of 𝐸 (𝑠),

𝐸 (𝑠) = 𝜙11e𝜔1𝑠𝑏1 + 𝜙12e𝜔2𝑠𝑏2 + · · · + 𝜙1𝑟e𝜔𝑟 𝑠𝑏𝑟 . (7.19)

For the energy to be convergent, the DMD modes must be convergent. This is readily achieved

with decaying mode frequencies, 𝜔𝑘—and, in fact, this is what we observe from from DMD

decomposition of IMSRG flow data. Figure 7.1 displays the exponentials which drive the IMSRG

dynamics in the DMD reconstruction of a strongly interacting P3H model. If we take 𝑠 to infinity,

DMD expansion will take the Hamiltonian to zero. In some cases, it may be beneficial or necessary

to define a termination constraint in the expansion. Figure 7.1 is typical in IMSRG data in the

sense that the slowest decaying mode, where the 𝜔’s are ordered from slowest to fastest, tends to

“look constant” in the range of relevant dynamics. In this case, we may approximate 𝜔1 ≈ 0 so that

88



𝑒𝜔1 ≈ 1. In this way, the DMD expansion will converge for any range of 𝑠. In this special case that

we wish to calculate the theoretically converged result as 𝑠→∞, note that

𝐸 (𝑠→∞) ≈ 𝜙11𝑏1, (7.20)

where the converged energy is simply the first element of Φ multiplied with the first DMD mode

amplitude. We refer to this as the no-decay approximation or ND approximation. The approximation

may be extended to the full Hamiltonian, evolved to 𝑠 → ∞, by multiplying with the entire DMD

eigenvector corresponding to 𝜔1.

Now we may characterize the efficacy of forecasting the IMSRG flow using DMD. There are

two primary parameters that can be varied to tune emulation performance, namely the number of

observations of the evolving system, 𝑁 , and the SVD truncation rank 𝑟. Increasing 𝑁 provides

the DMD emulation with more context, in the sense that the dynamics are more constrained to the

target problem. Increasing truncation rank 𝑟 improves the fidelity of the reduced DMD operator

in use, in the sense that more SVD directions are available to the dynamical expansion. However,

increasing 𝑟 too much may introduce noise to the expansion in the form of singular values which

are close to zero, causing instability in the dynamical expansion. One must tune these parameters

for the optimal performance in the target problem.

In the IMSRG context, we want to minimize the number of observations (i.e. polynomial-cost

ODE solver steps) while also minimizing the error of the forecasted evolved energy. The DMD

forecast is most useful if we can stop observing the flow before the convergence elbow in the

energy (see e.g. the top row of Figure 7.2, which plots the IMSRG-evolving energy). Beyond this

elbow, the IMSRG is essentially solved and forecasting is no longer useful. The 𝑠 value where the

convergence elbow begins and ends depends on the chosen flow generator; in general, however, we

find that taking 20-30 observations, at a step-width characteristic to the generator, provides enough

observations to safely converge to a reasonably accurate energy. This number of observations also

tends to fall close to the onset of convergence.

As an example, we consider an IMSRG(2) calculation of 16O, computed with a SRG-softened

NN3LO(500) interaction, and study the accuracy of the DMD forecast on the number of observa-
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Figure 7.2 DMD forecast results for 16O, in an eMax = 6 harmonic oscillator basis with oscillator width
ℏ𝜔 = 20 Mev, with SRG-softened NN3LO(500) interaction. The top row plots evolution of the ground state
energy, according to the IMSRG as well as DMD reconstruction of the IMSRG. The vertical dashed line
indicates where direct IMSRG observations stop. The bottom row plots the relative error in the energy at
𝑠 = 10 (panel B1) and 𝑠 = 20 (panel B2). The vertical dashed line indicates the relative error result for the
flow in the panel above.

tions. Our results are shown in Figure 7.2. The observation steps were taken in steps of 𝑑𝑠 = 0.05,

such that the max observed s at 1.0 corresponds to 20 observation points. We see from the bot-

tom row of plots that the relative error in the evolved energy improves quickly as the maximum

observation point approaches the elbow of convergence; beyond this region, the error improvement

saturates. In this way, observations beyond the elbow are not technically relevant for obtaining a

good DMD decomposition.

Figure 7.3 provides more detail on how error in the predicted energy interacts with the number

of observations and reduced DMD truncation rank. For fewer observations, the SVD is more

sensitive to noise—in other words, directions which correspond to near-zero singular values appear

at lower truncation levels, which causes instability in the DMD result. This is evident from the
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Figure 7.3 DMD emulation of 16, details as in Figure 7.2. Relative error in the DMD-predicted evolved
energy as a function of number of observations and truncation rank 𝑟 .

way relative error increases sharply beyond 𝑟 = 10 in the row corresponding to 20 observations, for

example. Figure 7.3 suggests that the most robust, and effective, way to reduce DMD error is to

increase the number of observations provided to the operator. In order for DMD emulation of the

IMSRG flow to be effective, we must balance the amount of observations with the error that can be

tolerated for the target problem.

Figure 7.4 plots the Frobenius error relative to the IMSRG result for DMD emulation of the

flow in different interactions and different nuclei, 16𝑂 and 20𝑁𝑒. Note that 20𝑁𝑒 open-shell,

which involves stiffer IMSRG(2) flow equations because the reference state is harder to decouple.

Also note that AV18 [14] is very “hard” phenomenological interaction, compared to the chiral

interactions in Chapter 4.2. We show the DMD is able to reproduce the full flowing Hamiltonian

with high accuracy in every case, meaning the DMD is able to fully capture the dynamics of the

problem regardless of the interaction. The DMD emulates the results within the finite subset of the

operator algebra that characterizes the IMSRG flow.

7.5 Emulating the Parametric IMSRG Flow

The “parametric” IMSRG is an extension to the IMSRG problem, which includes the cou-

pling constants that parameterize the evolving the Hamiltonian. For the purposes of uncertainty

quantification and sensitivity analyses, we need to explore the dependence of the IMSRG results

on the parameters of the chiral interactions (Chapter 4.2). The parameter space is very large at
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Figure 7.4 DMD emulation of the IMSRG(2) flow for 16𝑂 in two different interactions AV18 and a chiral
NN+3N interaction, and 20𝑁𝑒 in a chiral NN+3N interaction. The vertical axis plots the Frobenius error
relative to the IMSRG(2) result.

15+ dimensions and we require millions, or even billions, of samples to characterize the space.

Collecting this volume of samples is not feasible with direct IMSRG calculations. Thus, we want to

leverage DMD reduced-order models of the IMSRG flow to emulate the results. The super operator

we wish to emulate becomes

𝐻 (𝑐1, . . . , 𝑐𝑁𝑐
; 𝑠) = U(𝑐1, . . . , 𝑐𝑁𝑐

; 𝑠)𝐻 (𝑐1, . . . , 𝑐𝑁𝑐
; 0) (7.21)

where 𝑐𝑖 represents a particular coupling constant (e.g. the parameters of the P3H Hamiltonian,

or the LECs of the chiral interactions). The coupling constants which characterize the evolving

Hamiltonian also characterize the unitary transformation. In this emulation scheme, we apply

the DMD to emulate the unitary transformation as a trajectory 𝑠 along the coupling manifold

characterized by 𝑐1, . . . , 𝑐𝑁𝑐
. The primary algorithm we employ to tackle the parametric problem

is Reduced Koopman Operator Interpolation (rKOI), introduced by Huhn et al. [6]. In the rKOI

scheme, we directly interpolate the DMD operator by sampling a training set of DMD operators

computed from varying IMSRG trajectories along the Hamiltonian coupling manifold.

Algorithm 7.3 provides an overview of the rKOI algorithm. The key feature of this strategy
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is that the reduced DMD operator is interpolated directly. The DMD expansion computed from

Algorithm 7.3 Pseudocode implementation which demonstrates the algorithm for rKOI DMD.
vary coupling constants 𝑐1, . . . , 𝑐𝑁𝑐

𝑁train times and compute IMSRG trajectory 𝐷𝑖 for each
realization
for each 𝐷𝑖 in 𝑁train size set do

compute projected DMD in Algorithm 7.2
record 𝐴

(𝑖)
𝑟 , 𝑈 (𝑖)𝑟 , 𝑏 (𝑖)

end for
train interpolators to predict I𝐴𝑟

, I𝑈𝑟
, I𝑏 on training data {𝐴(𝑖)𝑟 }, {𝑈 (𝑖)𝑟 }, {𝑏 (𝑖)}

compute DMD expansion in Algorithm 7.2 from interpolated operators

interpolated operators reads

𝑥I
𝑘
= 𝑈I𝑟 𝑊

I (ΛI)𝑘−1𝑏I (7.22)

where we explicitly include how the interpolated operators enter into the expansion. Note that

𝑊I ,ΛI are computed by the eigendecomposition of 𝐴I𝑟 .

We refer to Algorithm 7.3, or the process of ingesting training data to compute the interpolated

operators, as the interpolation engine (IE). The computed operators from which we may construct

the DMD expansion, and therefore predict the evolution of the system given a target set of coupling

constants, we refer to as the interpolation engine model, or IEM. The trained IEM fully captures

the transformation to reduced space 𝑈𝑟 , the dynamical trajectory through the coupling constant

manifold encoded by 𝐴𝑟 , and the space of initial conditions—this means that a prediction using

this interpolation scheme is data-free, in the sense that the only input necessary to predict every

feature of the dynamical system is the target set of coupling constants. Of course, the accuracy

of the prediction depends on the success of the interpolation method, which itself depends on the

well-behaved nature of the manifold we wish to interpolate.

7.6 Interpolating DMD using RBFs

We have chosen to interpolate the required DMD operators using a radial basis function (RBF)

interpolator1, in linear and thin plate spline kernels. The mesh-free nature of RBF interpolation was

the deciding factor for its implementation in DMD interpolation—the RBF-IEM can freely provide
1SciPy documentation: https://docs.scipy.org/doc/scipy/reference/generated/scipy.

interpolate.RBFInterpolator.html#scipy.interpolate.RBFInterpolator.
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predictions not constrained to a mesh. Instead of a mesh, we employ Latin hypercube sampling

for optimal coverage of the parameter space, and the nature of the RBF interpolation allows us to

generalize the model inside and outside of the sampled region. In the following, we demonstrate the

success of the RBF-IEM in one and two dimensions, corresponding to the interaction parameters

𝑔, 𝑏 in the P3H model (Chapter 4.1), as well as the success of interpolation in a realistic nuclear

system.

Interpolating in 1D Toy Model Figure 7.5 illustrates how the RBF-IEM reproduces the evolved

energy in the P3H model across a wide range of pairing strengths 𝑔, with pair-breaking strength 𝑏

fixed at zero. In the 1D case, the training points have been sampled uniformly except at 𝑔 = 0 (we

exclude 𝑔 = 0 from the training space because the energy is trivially zero). The predicted energy

matches the IMSRG energy with reasonable accuracy, at least on the order 10−3, with a notable

loss in accuracy beyond the training point boundaries—this is a disadvantage of the mesh-free

interpolation.

Interpolating in 2D Toy Model In Figure 7.6, we now vary 𝑔 and 𝑏 in the P3H model. The

training points have been collected using a Latin hypercube sampling strategy. The Latin hypercube

sampling promotes optimal coverage by dividing the parameter space into equal partitions, and

then sampling one point from each partition. Note that the error range is fairly wide, with most

predictions received at an error 10−1 to 10−4. The distribution of training points seems to affect

the locality of error; that is, regions which are less dense with training points impute a larger error

in those regions. At the same time, there are particular regions, such as the lower left quadrant,

where increasing the number of training points does not seem to affect the error significantly. This

is likely improvement saturation constrained by the reconstruction error of the individual DMD

training points. In other words, the parametric emulator can only predict as well as the DMD

operators on which it has been trained.

In Figure 7.7, we plot the absolute relative error of direct DMD forecasts on the same grid points

as Figure 7.6. The results of DMD forecasting reveals that the RBF-IEM error is constrained by
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Figure 7.5 IMSRG(2) ground-state energy as a function of the pairing strength 𝑔, comparing the interpolated
DMD prediction against the IMSRG(2)-evolved result. The red dots indicate IMSRG(2) evolution training
points for the interpolation engine. Each training point represents 𝑁 = 50 IMSRG(2) iterations which are
used to construct a training DMD operator at SVD truncation level 𝑟 = 3.

the accuracy of the DMD itself. We might improve the error of the DMD forecast by increasing the

truncation rank. However, a larger DMD operator results in a more complicated parameter space

to interpolate.

Interpolating a Realistic Nucleus Ultimately, our goal is to construct a practical IMSRG(2)

emulator for realistic (nuclear) many-body calculations. There is an array of additional challenges

associated with the IE applied in this case, including memory requirements (compare the P3H

Hamiltonian of 103 IMSRG(2) coefficients to a realistic nucleus which requires 106−109 IMSRG(2)

coefficients), but we will demonstrate that they can be overcome. As an exampple, we will construct

an RBF-IEM to model realistic IMSRG(2) calculations of the closed-shell 16O nucleus, varying 24
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Figure 7.6 Absolute relative error in the evolved energy, comparing DMD emulation to IMSRG(2) evolution.
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low energy constants (LECs) in the underlying chiral N3LO NN interaction by Entem and Machleidt

(Chapter 4.2).

Figure 7.8 summarizes the interpolation error on 16O. The RBF-IEM was trained on 300 points,

where each training point is a rank 8 truncated DMD operator computed from 50 observations of

the evolving 16O Hamiltonian. We plot two error measurements, relative error in the evolved energy

and flow reconstruction error (mean-squared error of discrete flow matrix reproduced by DMD).

The relative error in the energy measures how well the RBF-IEM predicts the target evolved energy,

whereas the reconstruction error measures how well the RBF-IEM models the full dynamics of

the associated IMSRG(2) flow. Note the variability is rather high in both error measurements. We

measure the error according to direct IMSRG(2) calculations using parameters which were not in

the training set. Validation points with particularly high error likely are “far” from the training

points, meaning that the model does not seem to generalize well, and that more training points

could tighten the error spread. Additionally, interpolating the parameter space of the operator 𝑈𝑟 ,

which transforms the DMD operator to reduced space, is difficult since the size of the operator is

equal to the number of state variables in the dynamical system. This is in contrast to the parametric
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Figure 7.7 Absolute relative error in the evolved energy for DMD emulation, measured by IMSRG(2). Each
grid point is the evolved energy predicted by a rank 3 truncated DMD operator directly computed from the
flow, for the corresponding grid point.

space of the DMD operator itself, which is 82 parameters in this case.

To tackle this issue, we modify our approach by performing a reduction on the training space of

IMSRG(2) flows, taking inspiration from the partitioned approach to parametric DMD introduced

by Andreuzzi et al. [1]. Instead of interpolating the full dimension of the training space, we reduce

the feature dimension of the training space to the principal components with the help of an SVD.

Borrowing the notation of Andreuzzi et al. [1], let

𝑋 𝒄𝑖 B


| . . . |

𝑥
𝒄𝑖
1 . . . 𝑥

𝒄𝑖
𝑁

| . . . |


∈ R𝑚×𝑁 ,X1 B

[
𝑋 𝒄1 . . . 𝑋 𝒄𝑝

]
∈ R𝑚×𝑁𝑝, (7.23)

where 𝑋 𝒄𝑖 represents 𝑁 observations of the IMSRG(2) flow according to parametric set 𝒄𝑖 (e.g., a
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Figure 7.8 Error measurements from interpolation engine trained on 300 training points. In both panels, the
error measurement is distributed across 50 random validation points. The left pane plots absolute relative
error in the evolved energy. The right pane plots mean-squared error in the reconstructed flow from the
interpolated DMD operators.

particular set of LECs). There is evidence of low rank structure in the IMSRG(2) flow (we thank

Boyao Zhu and Heiko Hergert for their fruitful discussions in this regard; in addition, see [5]),

hence we expect that the training matrix of IMSRG(2) flows given by X1 will also exhibit low rank

structure. Indeed, Figure 7.9 shows that its singular value spectrum is decaying exponentially.

We proceed with SVD on X1, truncating at 𝑡 singular values. We emphasize that 𝑡 denotes the

reduction of the feature space associated with the training data, while 𝑟 denotes the truncation of

individual reduced DMD operators. Note that in the IMSRG context 𝑡 is likely to be much greater

than the truncation rank 𝑟 of the reduced DMD operator. The truncated SVD of X1 reads

X1 ≈ L𝑡𝚺𝑡R∗𝑡 . (7.24)

Finally, the state variable information in X1 is compressed using L𝑡 ,

X̃1 = L∗𝑡X1 ∈ R𝑡×𝑁𝑝, (7.25)

and parametric training may proceed with Algorithm 7.3 using the reduced training matrix. We

refer to the model produced by the reduction on the training space as reduced IEM, or rIEM.
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Figure 7.9 Singular value spectrum of the training matrix X1, scaled by the largest singular value.

RBF-rIEM is the RBF-interpolated version of the model. We might notate the truncation rank of

the reduced training space directly in the acronym for clarity, e.g. RBF-r(𝑡)IEM

In Figure 7.10, we have trained the RBF-r(1000)IEM on 300 rank-2 reduced DMD operators

in the reduced training space corresponding to truncation 𝑡 = 1000. Comparing with Figure 7.8,

we observe smaller variations in both measurements, with fluctuations staying between the orders

10−2 and 10−1.

We have show that the modified parametric DMD algorithm for training space reduction in-

creased prediction accuracy across a wide range of validation points. As a result of the training

space reduction, the time to compute the DMD operator training points, as well as the time to train

the IEM, was also reduced.

7.7 Optimized Training for Large Bases using Streaming SVD

The reduced IE method introduces the new cost of computing the SVD on the training space

in Equation 7.24. More specifically, we need the left singular vectors L𝑟 in order to perform the
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Figure 7.10 Error measurements from interpolation engine trained on 300 reduced training points. In both
panels, the error measurement is distributed across 50 random validation points. (LEFT) Absolute relative
error in the evolved energy. (RIGHT) Mean-squared error in the reconstructed flow from the interpolated
DMD operators.

reduction on the training space. Thus, the training algorithm performance hinges on the computation

of a very “tall and skinny” matrix X1, which likely will not completely fit into memory.

To address this problem, we employ the streaming SVD, or Sequential Karhunen-Loeve (SKL)

algorithm introduced by Levey and Lindenbaum [9], for computing the left singular vectors 𝑈 of

the full SVD via looping over data rectangles, stored on disk, for which each iteration R-SVD is

performed to extract the major singular vectors from a QR-decomposition of the rectangle. We

show the method’s pseudocode in Algorithm 7.4 and provide a schematic diagram in Figure 7.11.

The forget factor ff is a fraction between 0 and 1 that controls the contribution of each previous set

of singular vectors to the next. Algorithm 7.4 partitions calculation of 𝑈 such that each partition

of columns of the full matrix can be introduced into memory sequentially. The complexity of

computing the left singular values this way is comparable to the complexity of the full SVD, except

that the memory constraint has been relaxed. Note that the modes produced by the SKL algorithm

are robust to noise introduced by concatenation of new data [9]. In general, one does not worry

about significant singular vectors being lost in the concatenation. This fact has been tested and

proven by Levey and Lindenbaum [9]. An intuitive interpretation of this fact may be that for
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Algorithm 7.4 Pseudocode implementation which demonstrates the algorithm for streaming SVD,
originally conceived by Levey and Lindenbaum [9].

Initialization (rectangle 𝑘 = 0): Compute QR-decomposition 𝐴0 = 𝑄0𝑅0
Compute SVD 𝑅0 = 𝑈′0𝐷

(𝑘=0)𝑉𝑇
0 (truncating at desired rank)

Compute 𝑈 (𝑘=0) = 𝑄0𝑈
′
0 (where 𝑈𝑘 corresponds to the full SVD modes at update 𝑘)

for each rectangle 𝑘 >= 1 and matrix 𝐴𝑘 do
Append new data 𝐴𝑘 to previous basis (ff ·𝑈𝑘−1𝐷𝑘−1 |𝐴𝑘 ) = 𝐴′

𝑘

Compute QR-decomposition 𝐴′
𝑘
= 𝑄𝑘𝑅𝑘

Compute SVD 𝑅𝑘 = 𝑈′
𝑘
𝐷 (𝑘=0)𝑉∗

𝑘
(truncating at desired rank)

Update singular vectors 𝑈 (𝑘) = 𝑄𝑘𝑈
′
𝑘

end for

… k= P… k= jk= j-1k= 0

Off-line:
Data partitions, 
U, and D, are 
stored on disk

On-line:
U and D built from 
previous k=j-1 
rectangles are updated 
from k=j rectangle, via 
local R-SVD

+ 𝐴𝑗𝑈(𝑗−1)

𝐷(𝑗−1)

= 𝑄𝑗
𝑅𝑗

local R-SVD 
and truncate 
at rank T 𝑈′𝑗 𝐷𝑗 𝑉𝑗

′∗

=𝑅𝑗
Update U

𝑈(𝑗) = 𝑄𝑗
𝑈′𝑗

Figure 7.11 Schematic representation of the SKL algorithm [9]. In the on-line stage, the SVD modes and
singular values are updated are updated according to the local data at 𝑘 = 𝑗 . The updated modes and singular
values can be written to disk and unloaded from memory until the next update.
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Figure 7.12 The singular value spectrum of 300 training points corresponding to 16𝑂, in an eMax = 6
harmonic oscillator basis size and oscillator width ℏ𝜔 = 20.

a “good” random initialization point of the stream, stochastic introduction of new data tends to

suppress modes which are significantly different from previous modes, in an orthogonality sense.

Additionally, the rate of convergence of the streaming modes depends on the underlying density

of the low rank structure in the streaming data; that is, streaming data which exhibits a quickly

decaying singular value spectrum will converge faster under the SKL algorithm than streaming

data for which the spectrum decays more slowly. Figure 7.12 displays the singular value spectrum

convergence of the streaming SVD as new rectangles are incorporated. Note the dashed line which

displays the spectrum of the equivalent full SVD, i.e. performing SVD on the full dataset at once.

The largest 25-50 singular values converge the fastest in this truncation scheme. This means that,

depending on the desired truncation rank in the streaming SVD, we may not need to stream every

available data point to arrive at a satisfactory low rank approximation of the dataset.

7.7.1 A Parallel Implementation of the Streaming SVD

While current parallel implementations of streaming SVD focus on parallelization of the QR

algorithm itself [2, 10], we present a different approach that focuses on increasing the throughput

of the SKL algorithm. We simply call this approach parallel-SKL, or PSKL. We start with the fact

102



𝑈
𝑗=𝑘𝑃=0
𝑃=0

P=0 P=1 P=2 P=3

𝑈
𝑗=𝑘𝑃=1
𝑃=1 𝑈

𝑗=𝑘𝑃=2
𝑃=2 𝑈

𝑗=𝑘𝑃=3
𝑃=3

𝐷
𝑗=𝑘𝑃=0
𝑃=0 𝐷

𝑗=𝑘𝑃=1
𝑃=1 𝐷

𝑗=𝑘𝑃=2
𝑃=2 𝐷

𝑗=𝑘𝑃=3
𝑃=3Each task 

completes 
PSKL 
algorithm 
for assigned 
partition

Update final 
SVD modes 
from each 
task into 
each other

𝑈(𝑃=0)

𝐷(𝑃=0) Streaming 
update with
P=1 task 

𝑈𝑃=1

𝐷𝑃=1× Streaming 
update with
P=2 task 

𝑈𝑃=2

𝐷𝑃=2× Streaming 
update with
P=3 task 

𝑈𝑃=3

𝐷𝑃=3×

Figure 7.13 Diagram of a 4-task parallel-SKL algorithm. Each task 𝑃 is assigned a partition of data indices,
which together span the total range of the target data. Then, each task 𝑃 computes its own streaming SVD
of its data partition. Finally, the modes computed from each task are updated into each other, sequentially.

that the SKL algorithm makes no assumptions on the ordering of the data partitions stored on disk,

nor does the on-line update of SVD modes in Figure 7.11 account for which data partitions are used,

or when they are ingested. However, the SVD modes at update step 𝑘 do contain information about

all data partitions before step 𝑘 (to the extent controlled by the forget-factor ff), in the form of

iterative projections of old information onto new information. Therefore, the parallel structure we

present is to simply partition the ingestion of off-line data over several, parallel tasks, each of which

perform their own streaming SVD of the data they are assigned. Once each task is completed, these

separate, parallel SVD modes may be sequentially updated into each other, generating a single set

of SVD modes which contain information from all tasks. Figure 7.13 displays a diagram which

illustrates the PSKL algorithm. Note that the information required for sequential updating after

each task is completed is stored in the matrix multiplication of U𝑃D𝑃.

Figure 7.14 confirms that information from each separate task is preserved during the final

combination step. The PSKL singular value spectrum, computed using 2 tasks in this example, is

consistent with the spectrum of a full SVD calculation.
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Figure 7.14 Singular value spectrum comparison between the full SVD and a 2-task PSKL run, for a training
matrix of 300 points corresponding to 16𝑂, in an eMax = 6 harmonic oscillator basis size and oscillator
width ℏ𝜔 = 20.

Assuming each task has access to resources identical to the sequential version, then the PSKL

algorithm performance scales at least linear in the number of tasks. Of course, this resource dupli-

cation across tasks also implies linear scaling in the total memory consumption of the algorithm.

However, the performance gains may be worth the memory costs on systems where large amounts

of memory are available.

7.8 Outlook

In this chapter, we have presented a method for constructing an IMSRG(2) emulator, using

DMD as the driving mechanism for predicting the IMSRG dynamics. We have shown that DMD

may be used to forecast a single IMSRG(2) evolution (robust to different interactions and nuclei),

reducing the number of polynomial-cost ODE solver iterations required for a converged result. We

have also shown that DMD may be used to construct an interpolation engine for the purpose of

training a model that emulates the flow for any set of parameters that characterize the Hamiltonian

including resultion scales and cutoffs. In this case, we desire a rich set of IMSRG(2) evolutions in

order to populate the IEM training set with high-fidelity DMD operators. The larger the training

set, the more difficult data ingestion becomes; we have presented a solution to this problem using
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PCA to reduce the training set, in tandem with the SKL algorithm for streaming SVD.

With all these improvements combined, we are able to construct a confident model of the

IMSRG(2) evolutions of a target nucleus and the associated Hamiltonian, parameterized by the

LECs in chiral EFT. In Chapter 8, we present a practical application of RBF-rIEM for IMSRG(2)

applied to nuclear Hamiltonians: namely, global sensitivity analysis of energies to variations of

the LECs. This analysis is important to determining the contribution of the variance of particular

LECs to the total variance in the evolved energy. In future work, this sensitivity knowledge may

let us generate more efficient training bases for higher fidelity IEMs, as well as construct efficient

sampling distributions for a proper statistical uncertainty quantification of observables that are

computed with IMRSG methods.
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CHAPTER 8

GLOBAL SENSITIVITY ANALYSIS USING IMSRG EMULATION

8.1 Introduction

In this chapter, we present a practical application of the parametric IMSRG emulator: A global

sensitivity analysis (GSA) of energies to variations in the low-energy constants (LECs) which

define the nuclear interactions constructed from Chiral EFT, as explained in Chapter 4.2. We

present several GSAs for selected nuclei at interaction chiral orders N2LO (including NN and 3N

interactions) and N3LO (using NN forces only). Our strategy for GSA mirrors the strategy of

Ekström and Hagen [3], so that our results for 16O with the NNLOsat interaction should be directly

comparable. Note that this GSA would not be feasible without the improvements achieved by the

reduced-basis interpolation strategy of Chapter 7.6.

The sensitivity analysis was performed with aid from the SALib1 Python package [8, 6]. We

follow the Sobol’ approach to global sensitivity analysis [10, 9]. The sensitivity measures the

variance in the model output captured by a change in the model parameters. To begin, the total

variance 𝐷 of the model output 𝑌 , with respect to the model parameters, is decomposed into a

sum of partial variances relative to simultaneous changes in an increasing number of parameter

𝑐𝑖. Denoting the variance for varying a single parameter while keeping all others fixed 𝐷𝑖, for two

parameters 𝐷𝑖 𝑗 , etc., the decomposition reads

𝐷 =
∑︁
𝑖

𝐷𝑖 +
∑︁
𝑖, 𝑗 ,𝑖≠ 𝑗

𝐷𝑖, 𝑗 + · · · . (8.1)

The first-order sensitivity to parameter 𝑐𝑖 is given by

𝑆𝑖 =
𝐷𝑖

𝐷
, (8.2)

and the total sensitivity to the parameter 𝑐𝑖 is given by a sum over all orders of sensitivity,

𝑆𝑇,𝑖 = 𝑆𝑖 + 𝑆𝑖 𝑗 + · · · 𝑆𝑖...𝑁 . (8.3)

1Documentation can be found at https://salib.readthedocs.io/en/latest/index.html.
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The first-order sensitivity integral with respect to parameter 𝑐𝑖 is [9]

𝑆𝑖 =
Var𝑖 [E∼i [𝑌 | 𝑐𝑖]]

𝐷
, (8.4)

where the expectation value 𝐸 index ∼ i represents the set of all parameters excluding 𝑐𝑖. The total

sensitivity integral with respect to the parameter 𝑐𝑖 is [9]

𝑆𝑇,𝑖 = 1 − Var∼i [E𝑖 [𝑌 | 𝑐∼i]]
𝐷

. (8.5)

𝑆𝑖 describes the sensitivity of the model output 𝑌 to 𝑐𝑖 while fixing all other parameters, i.e. 𝑐∼i.

𝑆𝑇,𝑖 describes the sensitivity of 𝑌 to 𝑐𝑖 including the first-order effect plus all higher orders. Thus,

the total sensitivity encodes correlations between parameters in the model output.

In the Sobol’ approach to global sensitivity analysis, the integrals in Equations 8.4 and 8.5 are

estimated via Sobol’ sequence sampling of the model output, which is used for quasi-MC methods.

The Sobol’ sequence successively divides the parameter space in half, for an optimal number of

partitions, such that random samples in each partition optimally cover the full parameter space.

Note that sampling the RBF-rIEM can be very fast, provided the reduced model is being

sampled, i.e. the model before transformation back to the full IMSRG space via L𝑟 (see Equation

7.25). Once all relevant samples have been collected, the reduced samples may be transformed

back to the full space in a single batch by applying the learned transformation.

8.2 GSA with a Chiral N3LO Nucleon-Nucleon Interaction

In Figure 8.1, we present a Sobol’ sensitivity analysis of the 16O ground-state energy from

IMSRG(2) calculations with chiral N3LO NN interactions with cutoff Λ𝑏 = 500 MeV. Our baseline

is the NN3LO(500) interaction by Entem and Machleidt [4], for nucleus 16O. We trained a RBF-

r(50)IEM of 16O on 300 DMD operator training points built from 50 observations of corresponding

IMSRG(2) evolutions. We used an eMax = 12 harmonic oscillator basis size with oscillator width

ℏ𝜔 = 20 Mev. The corresponding LEC training set has been sampled from a Latin hypercube

with ±20% relative variations around the standard N3LO LEC set in Table 4.2. The particular

contacts which were varied appear on the horizontal axis of 8.1. The analysis was performed with
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Figure 8.1 First-order and total sensitivity of the IMSRG(2) ground-state energy for 16O energy to variation
of the LECs around the standard N3LO(500) interaction of Entem and Machleidt [4]. The left panel contains
the sensitivity information per LEC. The right panel plots the total variance in the energy. The shaded region
in the variance plot represents the 1𝜎 and 2𝜎 range.

13,631,488 Sobol’ sequence samples of the RBF-r(50)IEM, totaling about 10 minutes of wall-

time on a high performance computer, in Figure 7.10. The same number of complete IMSRG(2)

calculations, on the same high performance computer, would require approximately 7700 years of

compute time. We sample within a ±10% relative variation of the standard N3LO LECs. The two

most sensitive parameters in �̃�3𝑆1 and 𝐶1𝑆0 are consistent with the N2LO sensitivities presented by

Ekström and Hagen [3]. The first-order sensitivity matches almost exactly to the total sensitivity

in all LECs, meaning that variations in single LECs do not affect the others, at least according to

the fitted RBF-r(50)IEM.

The top four most sensitive parameters, in this model, are 𝐶3𝑆1 , 𝐶1𝑆0 , 𝐶3𝑆1−3𝐷1 , and 𝐶3𝑃2 . Note

that we neglect the isospin breaking in the leading 1S0 contact 𝐶𝑛𝑝

1𝑆0
. 𝐶1𝑆0 is the subleading contact

in the 1𝑆0 partial wave, so it probably renormalizes the core. 𝐶3𝑆1 and 𝐶3𝑆1−3𝐷1 are in the deuteron

partial waves — the mixed waves is impacted by the strength of the tensor interaction. The S=1

P-waves (𝐶3𝑃𝑥
), and 𝐶3𝑃2 in particular, probably renormalize short-range spin-orbit physics.

8.3 GSA with Chiral NNLO Two- Plus Three-Nucleon Interactions

In this section, we present a Sobol’ sensitivity analysis of the Chiral NNLO LECs by Ekström

et al. [1, 2], up to the 3B forces. Here we have performed the analysis using interactions constructed

from “delta-full” and “delta-less” chiral EFT. In this “delta-full” ΔNNLOGO(394) interaction we

explicitly add fixed resonance saturation values to the 𝑐3 and 𝑐4 LECs in the Fujita-Miyazawa

force, because the low cutoff allows us to absorb into the adjust of 𝑐3 and 𝑐4, without the need to
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implement the long-range term explicitly. The LECs 𝑐3, 𝑐4 are adjusted by an amount 𝑐Δ3 , 𝑐
Δ
4 [2],

𝑐Δ3 = −2𝑐Δ4 =
4ℎ2

𝐴

9𝛿
= −2.972246 GeV−1, (8.6)

for final values that read,

𝑐3𝑁
3 = 𝑐3 + 𝑐Δ3 = −3.61

𝑐3𝑁
4 = 𝑐4 + 𝑐Δ4 = +2.44

(8.7)

Additionally, we must include the 𝑐2 𝜋𝑁 LEC in the variation, for a total of 19 variation

parameters (see Table 4.1, Chapter 4.2). The 𝑐3 and 𝑐4 LECs in the “delta-less” NNLOsat(450)

interaction, which read [1]

𝑐3 = −3.93

𝑐4 = 3.77,
(8.8)

take on similar values to the resonance-saturation-adjusted 𝑐3𝑁
3 and 𝑐3𝑁

4 in the ΔNNLOGO(394)

interaction after introduction of the Fujita-Miyazawa term. The NNLOsat(450) does not include

the 𝑐2 LEC, for a total of 18 variation parameters.

For both interactions, we have trained RBF-r(50)IEMs for each nucleus that was studied. The

models were trained on 130 DMD training operators, which were constructed from 50 observations

of each corresponding IMSRG(2) evolution. We used an eMax = 12 harmonic oscillator basis size

with oscillator width ℏ𝜔 = 20 Mev. Every LEC training set has been sampled from a Latin hypercube

with ±20% relative around the corresponding standard LEC set for the chosen interaction.

8.3.1 Delta-full NNLO

The trained RBF-r(50)IEM has been Sobol’-sampled 11,010,048 times within a ±10% relative

variation around the corresponding standard LEC in Table 4.1. The total wall-time for each Sobol’

sampling routine is on the order of a few minutes, on a high performance computer. A full

IMSRG(2) calculation for the same number of Sobol’ samples, on the same high performance

computer, would require approximately 6000 years of compute time.

The sensitivity analyses in Figure 8.3 show near consistent parameter sensitivity across the

studied neutron-rich Calcium isotopes. The most sensitive parameter is the 𝐶
(𝑛𝑝)
3𝑆1

. There seems
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Figure 8.2 Summary ofΔNNLOGO(394) LEC sensitivity as sampled by the RBF-r(50)IEMs corresponding to
each nucleus in neutron-rich Calcium isotopes, based on samples of interactions around the ΔNNLOGO(394)
baseline. The left column plots of the sensitivities of each nucleus per LEC. The right column plots the total
variance in the energy as measured by the model for that nucleus. The shaded region in the variance plot
represents the 1𝜎 and 2𝜎 range.
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Figure 8.3 Summary of two-neutron separation energies (𝑆2𝑛) as sampled by the RBF-r(50)IEMs corre-
sponding to each nucleus in neutron-rich Calcium isotopes, based on samples of interactions around the
ΔNNLOGO(394) baseline. The left column plots of the sensitivities of each S2N per LEC. The right column
plots the total variance in the energy as measured by the model for that S2N. The shaded region in the
variance plot represents the 1𝜎 and 2𝜎 range.

to be very little dependence on the 𝑐𝑖’s. As in the NN3LO(500) interaction, the LEC sensitivities

are fully first-order in the RBF-r(50)IEM model output. In Figure 8.3 we plot the two-neutron

separation 𝑆2𝑛 energies corresponding to the Calcium isotopes presented. We calculate the 𝑆2𝑛

energy by simply subtracting between the sampled model outputs of two nuclei (carefully ensuring

that each subtraction is between two outputs on the same input LEC set), e.g. 𝐸 (50𝐶𝑎 −48 𝐶𝑎) =

𝐸 (50𝐶𝑎) − 𝐸 (48𝐶𝑎), 𝐸 (52𝐶𝑎 −50 𝐶𝑎) = 𝐸 (52𝐶𝑎) − 𝐸 (50𝐶𝑎), and so on. The sensitivity patterns

change here, because small differences in the separate nuclear model outputs are enhanced by

division of the total variance in the subsequent sensitivity analysis. A major differing feature is

that there appears to be second- and higher-order sensitivity effects in play, since the first-order

sensitivity does not fully account for the total sensitivity. This is expected, because the 𝑆2𝑛 energy
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Figure 8.4 Summary of NNLOsat(450) LEC sensitivity in 16O as sampled by the RBF-r(50)IEMs around
the NNLOsat(450) baseline. The left panel plots of the sensitivities per LEC. The right panel plots the total
variance in the energy as measured by the RBF-IEM. The shaded region in the variance plot represents the
1𝜎 and 2𝜎 range.

output depends on the outputs of two independent nuclear models.

8.3.2 Delta-less NNLO

Each trained RBF-r(50)IEM has been Sobol’-sampled 1,310,720 times within a ±10% relative

variation around the corresponding standard NNLOsat(450) LEC set in Table 4.1. The total wall-

time for each Sobol’ sampling routine is on the order of a few minutes, on a high performance

computer. A full IMSRG(2) calculation for the same number of Sobol’ samples, on the same high

performance computer, would require approximately 750 years of compute time.

The sensitivity analysis for 16𝑂 in Figure 8.4 was performed using the same interaction as in

Ekström and Hagen [3] (with slightly different variation parameters). We note slight differences

between our results and Ekström and Hagen [3], especially in the 𝐶1𝑆0 contact, which may be due

to differing learned models. In this RBF-r(50)IEM model, there appears to be some higher-order

effects in the 𝑐3 and 𝑐4 contacts which are important. There does not appear to be much dependence

on the 𝑐𝐸 , 𝑐𝐷 contacts relevant to the 3N force.

As in the previous section for ΔNNLOGO(394), in Figure 8.5 we show the sensitivity analyses

for several neutron-rich Calcium isotopes as sampled by learned RBF-r(50)IEMs working in the

NNLOsat(450) interaction. In contrast to the previous section, we find increased importance, as

well as higher-order sensitivities, in the 𝑐3, 𝑐4 contacts. These effects carry into the 𝑆2𝑛 energy

sensitivities in Figure 8.5.
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Figure 8.5 Summary of NNLOsat(450) LEC sensitivity as sampled by the RBF-r(50)IEMs corresponding to
each nucleus in neutron-rich Calcium isotopes, based on samples of interactions around the NNLOsat(450)
baseline. The left column plots of the sensitivities of each nucleus per LEC. The right column plots the total
variance in the energy as measured by the model for that nucleus. The shaded region in the variance plot
represents the 1𝜎 and 2𝜎 range.
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Figure 8.6 Summary of two-neutron separation energies (𝑆2𝑛) as sampled by the RBF-r(50)IEMs corre-
sponding to each nucleus in neutron-rich Calcium isotopes, based on samples of interactions around the
NNLOsat(450) baseline. The left column plots the sensitivities of each nucleus per LEC. The right column
plots the total variance in the energy as measured by the model for that nucleus. The shaded region in the
variance plot represents the 1𝜎 and 2𝜎 range.

8.4 Discussion and Outlook

The right panel total variances reveal important information about the fitted RBF-rIEM for

each nucleus. First of all, since in every case the LEC variation samples at a fixed width around

standard LEC sets (Tables 4.1 and 4.2), we would expect the most probable value, e.g. the peak of

the distribution, to reflect the IMSRG(2) outcome for the interactions associated with the standard

LEC sets. However, there seems to be systematic error in the expected result from each emulator;

in particular, the expected energies are consistently overbound relative the IMSRG(2) result (see

Table 8.1). The reason seems to be an overbinding bias in the training sets generated to train the
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(A)Ca 𝐸IMSRG(2) (MeV) 𝐸exp (Mev)
48 -403.351178 -416.001197 (19)
50 -411.5000324 -427.508 (2)
52 -419.1716484 -438.32786 (68)
54 -421.911536 -445.37 (5)
56 -423.3308106 -449.85 (2)

(A)O ΔNNLOGO(394) 𝐸IMSRG(2) (MeV) 𝐸NNDC (Mev)
16 -108.8349651 127.6193152 (32)

Table 8.1 IMSRG(2) evolved energies according to theΔNNLOGO(394)interaction. The experimental values
from the NNDC are tabulated here for reference, but are not necessarily relevant to the emulator results.

RBF-rIEM for each nucleus.

We measured over/underbinding bias by checking the proportion of IMSRG(2) NNLO training

points which resulted in an evolved energy outside an arbitrary fixed energy width of ±20% relative

to the IMSRG(2) evolved energy using the standard LEC set. Then, an overbound data point is

𝐸EMU < 𝐸IMSRG(2) − 20%, whereas an underbound data point 𝐸EMU > 𝐸IMSRG(2) + 20%. A “safe”

data point is inside the 20% tolerance. We found that the training sets for the calcium isotopes in

Figures 8.2 and 8.5 typically presented more overbound data points relative to safe and underbound

data points. We did not check the bias for the N3LO training points for 16𝑂 explicitly (see Figure

8.1) although the safe assumption is that this training set presented an underbinding bias, because

the mode of the distribution is above the baseline result from Hergert et al. [5], who report a

converged energy of 𝐸 = −126.01 MeV. The takeaway message is that the emulator is successfully

capturing the sensitivity in the chosen model space, as expected.

By exploring the robustness of the emulator in the number of training points, varying observables

and training space reduction rank, we have shown that these biases are likely not caused by the

emulation machinery, but the crude uniform prior from which we sampled the training points.

This motivates better choices in the sampling distribution. In the future, we intend to implement

a Bayesian history matching approach akin to Vernon et al. [11], which has been used in recent

nuclear physics applications [7]. In this approach, a training set is constructed from so-called non-

implausible interactions by validating the corresponding randomly-sampled LEC sets according to

some implausibility criteria. Ideally, we use data for selected observables and expert knowledge to
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define the implausibility measure in appropriate fashion.

Naively, we could validate a non-implausible LEC set based on the converged energy of

IMSRG(2) evolutions for selected nuclei and families of interaction; however, full IMSRG(2)

calculations are expensive. Instead, we might choose to determine non-implausibility by evaluating

NN scattering phase-shifts which result from each LEC sample. Once the training data is “clean”

in the implausibility sense, we may employ importance re-sampling to dynamically update the LEC

sampling distributions to more realistic ranges, based on the results from the GSAs in the previous

sections. The goal of combining these methods is to progress toward a quantifiable theoretical error

on a prediction provided by the emulator.
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CHAPTER 9

CONCLUSIONS AND OUTLOOK

In this work, we have made significant progress toward the theoretical and computational im-

provement of the IMSRG, as outlined in Chapter 1. Here, we summarize the main scientific

contributions presented in this work and outline the future directions that naturally arise from the

studies conducted therein.

Chapter 5 presented a tensor network architecture scheme for factorizing data structures relevant

the to numerical solution of the IMSRG flow. We showed that the tensor-train decomposition can

be used to factorize the occupation factors, which are constant in the flow, thereby reducing the

memory cost (e.g. 𝑁2 to 𝑁 in some cases) of storing on disk. We recast the IMSRG flow equations

as tensor contractions to be performed by a tensor library, which when combined with factorization

of the occupation factors has favorable scaling over naive loop implementations in a toy model.

Success here motivates the continued exploration of reduced representations of the IMSRG itself.

In the future, we wish to leverage the performance improvements provided by these techniques in

the IMSRG production codes. Tensor library integration will also guarantee that the IMSRG codes

take advantage of improvements developed by the maintainers of the library, so that the IMSRG

calculation is always as efficient as possible. Improvements to the speed and efficiency of the

IMSRG production codes would carry into all other advances presented in this work, since they

rely on full-scale IMSRG calculations, e.g.., for the construction of training data.

Chapter 6 presented our main methodological improvement to the IMSRG, called the reference

state ensemble. We formulated the reference state ensemble as a mixture of independent one-body

density matrices for selected Slater determinant configurations, which are weighted according to

tunable probabilities. We showed that we can reduce error due to truncation of induced terms by

informing the standard IMSRG operator basis with excited state information using the ensemble—

the evidence being how the reference ensemble stabilizes the spectrum of an evolving Hamiltonian,

where a corresponding single reference IMSRG flow would diverge. Ultimately, we use the
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reference ensemble to attempt to maintain the unitarity of the IMSRG flow as measured by the

invariance of the Hamiltonian’s spectrum. Future work in this area will involve a new formulation

of the optimization problem using a proxy observable (i.e. not the spectrum) whose evaluation does

not require costly exact diagonalizations of the flowing Hamiltonian. Following this breakthrough,

we may extend the reference ensemble to realistic nuclear calculations, as well as integrate it into

our emulator techniques presented in Chapter 7.

Chapter 7 presented our main computational improvement to the IMSRG, which is a method for

emulating the evolution with the help of the so-called Dynamic Mode Decomposition (DMD). We

showed that the DMD expansion, informed by direct measurements of the IMSRG-evolved Hamil-

tonian, may be interpreted as approximating the unitary transformation generated by integration of

the IMSRG flow equations. Using this emulator technique, we presented a method for emulating

the parametric IMSRG based on an “interpolation engine” powered by DMD. We improved the

interpolation method further by effectively performing a Principal Component Analysis (PCA) to

reduce the feature space of the IMSRG training points—and we showed, critically, how to imple-

ment the PCA calculation via a streaming Singular Value Decomposition in order to mitigate the

memory constraints that come with larger realistic IMSRG model spaces. The IE generalized well

enough to the full parameter space to perform sensitivity analyses on the parameters of the chiral

interactions, the LECs, which we presented in Chapter 8. Future work will attempt to apply the

DMD method to the Magnus formulation of the IMSRG, which has the critical advantage that the

unitary transformation driving the IMSRG flow is measured directly, instead of implicitly through

measurements of the flowing Hamiltonian (as is the case in the standard IMSRG). Emulating the

Magnus operator has the advantage that we may easily emulate the flow of observables besides the

Hamiltonian, without ever taking direct measurements of their evolution. Additionally, we wish to

improve the parametric emulator by informing the baseline, uniform prior with nonimplausibility

criteria, e.g., through history-matching, in order to curtail the training set biases and optimize the

useful physical information present in the training space. Improvements in all these areas will

take us closer to proper theoretical error bars on the IMSRG results, which will allow us to use the
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method to address scientific challenges in nuclear physics, nuclear astrophysics, and the exploration

of the fundamental symmetries of the Standard Model of Particle Physics.
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APPENDIX A

TENSOR TRAIN DECOMPOSITION OF OCCUPATION FACTORS

A.1 Tensor Train Decompositions for Occupation Factors in the IMSRG(2)

𝐴(𝑎, 𝑏) = 𝑛𝑎 − 𝑛𝑏 =
[
𝑛𝑎 1

] 
1

−𝑛𝑏

 (A.1)

𝐵(𝑎, 𝑏) = 1 − 𝑛𝑎 − 𝑛𝑏 =
[
1 − 𝑛𝑎 1

] 
1

−𝑛𝑏

 (A.2)

𝐶 (1) (𝑎, 𝑏, 𝑐) = 𝑛𝑎𝑛𝑏�̄�𝑐 + �̄�𝑎�̄�𝑏𝑛𝑐 = 𝑛𝑎𝑛𝑏 + 𝑛𝑐 − 𝑛𝑏𝑛𝑐 − 𝑛𝑎𝑛𝑐

=

[
𝑛𝑎 1 1 𝑛𝑎

]


𝑛𝑏 0 0 0

0 1 0 0

0 0 −𝑛𝑏 0

0 0 0 −1





1

𝑛𝑐

𝑛𝑐

𝑛𝑐


(A.3)

𝐶 (2) (𝑎, 𝑏, 𝑐) = 𝑛𝑎�̄�𝑏�̄�𝑐 + �̄�𝑎𝑛𝑏𝑛𝑐 = 𝑛𝑏𝑛𝑐 + 𝑛𝑎 − 𝑛𝑎𝑛𝑐 − 𝑛𝑎𝑛𝑏

=

[
𝑛𝑏 1 1 𝑛𝑏

]


𝑛𝑐 0 0 0

0 1 0 0

0 0 −𝑛𝑐 0

0 0 0 −1





1

𝑛𝑎

𝑛𝑎

𝑛𝑎


(A.4)

𝐷 (𝑎, 𝑏, 𝑐, 𝑑) = 𝑛𝑎𝑛𝑏�̄�𝑐�̄�𝑑 =

[
𝑛𝑎 0

] 
𝑛𝑏

0


[
1 − 𝑛𝑐 0

] 
1 − 𝑛𝑑

0

 (A.5)
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𝐷 (2) (𝑎, 𝑏, 𝑐, 𝑑) = �̄�𝑎�̄�𝑏𝑛𝑐𝑛𝑑 − 𝑛𝑎𝑛𝑏�̄�𝑐�̄�𝑑 =

=

[
1 −𝑛𝑎 1 −𝑛𝑎 𝑛𝑎 𝑛𝑎

]


1 0 0 0 0 0

0 1 0 0 0 0

0 0 −𝑛𝑏 0 0 0

0 0 0 𝑛𝑏 0 0

0 0 0 0 𝑛𝑏 0

0 0 0 0 0 𝑛𝑏



×



𝑛𝑐 0 0 0 0 0

0 𝑛𝑐 0 0 0 0

0 0 𝑛𝑐 0 0 0

0 0 0 1 0 0

0 0 0 0 𝑛𝑐 0

0 0 0 0 0 1





𝑛𝑑

𝑛𝑑

𝑛𝑑

1

1

𝑛𝑑


(A.6)

𝐸 (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ) = 𝑛𝑎𝑛𝑏𝑛𝑐�̄�𝑑 �̄�𝑒�̄� 𝑓 =

[
𝑛𝑎 0

] 
𝑛𝑏

0


[
𝑛𝑐 0

] 
1 − 𝑛𝑑

0


[
1 − 𝑛𝑒 0

] 
1 − 𝑛 𝑓

0

 (A.7)
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APPENDIX B

MULTI-REFERENCE IMSRG(2) FLOW EQUATIONS

B.1 Multi-Reference IMSRG(2) Flow Equations

The multi-reference IMSRG(2) flow equations include irreducible density matrices (IDMs),

introduced in Chapter 2.6, which encode correlations in the reference state that couple to the

correlations described by the IMSRG flow. Here, we record the MR-IMSRG(2) flow equations as

they are introduced by Hergert [1]:

𝑑𝐸

𝑑𝑠
=
∑︁
𝑎𝑏

(𝑛𝑎 − 𝑛𝑏)[𝑎𝑏 𝑓𝑏𝑎 +
1
4

∑︁
𝑎𝑏𝑐𝑑

([𝑎𝑏𝑐𝑑Γ𝑐𝑑𝑎𝑏 − Γ𝑎𝑏𝑐𝑑[𝑐𝑑𝑎𝑏) 𝑛𝑎𝑛𝑏𝑛𝑐𝑛𝑑

+ 1
4

∑︁
𝑎𝑏𝑐𝑑

(
𝑑

𝑑𝑠
Γ𝑎𝑏𝑐𝑑

)
_𝑎𝑏𝑐𝑑 +

1
4

∑︁
𝑎𝑏𝑐𝑑𝑘𝑙𝑚

([𝑎𝑏𝑐𝑑Γ𝑘𝑙𝑎𝑚 − Γ𝑎𝑏𝑐𝑑[𝑘𝑙𝑎𝑚) _𝑏𝑘𝑙𝑐𝑑𝑚,
(B.1)

𝑑𝑓𝑖 𝑗

𝑑𝑠
=
∑︁
𝑎

([𝑖𝑎 𝑓𝑎 𝑗 − 𝑓𝑖𝑎[𝑎 𝑗 ) +
∑︁
𝑎𝑏

(
[𝑎𝑏Γ𝑏𝑖𝑎 𝑗 − 𝑓𝑎𝑏[𝑏𝑖𝑎 𝑗

)
(𝑛𝑎 − 𝑛𝑏)

+ 1
2

∑︁
𝑎𝑏𝑐

(
[𝑖𝑎𝑏𝑐Γ𝑏𝑐 𝑗𝑎 − Γ𝑖𝑎𝑏𝑐[𝑏𝑐 𝑗𝑎

)
(𝑛𝑎𝑛𝑏𝑛𝑐 + 𝑛𝑎𝑛𝑏𝑛𝑐)

+ 1
4

∑︁
𝑎𝑏𝑐𝑑𝑒

([𝑖𝑎𝑏𝑐Γ𝑑𝑒 𝑗𝑎 − Γ𝑖𝑎𝑏𝑐[𝑑𝑒 𝑗𝑎)_𝑑𝑒𝑏𝑐 +
∑︁
𝑎𝑏𝑐𝑑𝑒

([𝑖𝑎𝑏𝑐Γ𝑏𝑒 𝑗𝑑 − Γ𝑖𝑎𝑏𝑐[𝑏𝑒 𝑗𝑑)_𝑎𝑒𝑐𝑑

− 1
2

∑︁
𝑎𝑏𝑐𝑑𝑒

([𝑖𝑎 𝑗𝑏Γ𝑐𝑑𝑎𝑒 − Γ𝑖𝑎 𝑗𝑏[𝑐𝑑𝑎𝑒)_𝑐𝑑𝑏𝑒 +
1
2

∑︁
𝑎𝑏𝑐𝑑𝑒

([𝑖𝑎 𝑗𝑏Γ𝑏𝑐𝑑𝑒 − Γ𝑖𝑎 𝑗𝑏[𝑏𝑐𝑑𝑒)_𝑎𝑐𝑑𝑒,

(B.2)

𝑑Γ𝑖 𝑗 𝑘𝑙

𝑑𝑠
=
∑︁
𝑎

([𝑖𝑎Γ𝑎 𝑗 𝑘𝑙 + [ 𝑗𝑎Γ𝑖𝑎𝑘𝑙 − [𝑎𝑘Γ𝑖 𝑗𝑎𝑙 − [𝑎𝑙Γ𝑖 𝑗 𝑘𝑎 − 𝑓𝑖𝑎[𝑎 𝑗 𝑘𝑙 − 𝑓 𝑗𝑎[𝑖𝑎𝑘𝑙 + 𝑓𝑎𝑘[𝑖 𝑗𝑎𝑙 + 𝑓𝑎𝑙[𝑖 𝑗 𝑘𝑎)

+ 1
2

∑︁
𝑎𝑏

([𝑖 𝑗𝑎𝑏Γ𝑎𝑏𝑘𝑙 − Γ𝑖 𝑗𝑎𝑏[𝑎𝑏𝑘𝑙) (1 − 𝑛𝑎 − 𝑛𝑏)

+
∑︁
𝑎𝑏

(𝑛𝑎 − 𝑛𝑏)
( (
[𝑖𝑎𝑘𝑏Γ 𝑗 𝑏𝑙𝑎 − Γ𝑖𝑎𝑘𝑏[ 𝑗 𝑏𝑙𝑎

)
−

(
[ 𝑗𝑎𝑘𝑏Γ𝑖𝑏𝑙𝑎 − Γ 𝑗𝑎𝑘𝑏[𝑖𝑏𝑙𝑎

) )
.

(B.3)

Note that these equations reduce to the single reference flow equations, in Equation 3.18, when

we set the IDMs equal to zero. In contrast to the regular IMSRG(2), the MR-IMSRG(2) naively
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scales as 𝑂 (𝑁7) when the term proportional to the three-body IDM is included in the zero-body

flow equation B.1. For common types of reference states, we can often exploit the specific structure

of the IDMs to reduce the scaling of the associated terms in the flow equations, and thereby recover

the same𝑂 (𝑁6) computational cost as in the conventional IMSRG(2). Evolving the MR-IMSRG(2)

flow equations usually requires one to two orders of magnitude more integration steps [1].
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APPENDIX C

CONTRIBUTED CODE PROJECTS

In this appendix, we record the code projects that were created, developed, or improved upon as

contribution to this thesis. These code projects were also used in the studies presented within the

main body of this work.

C.1 IMSRG Codes

The codes in Table C.1 were developed to implement the IMSRG(2) flow of schematic Hamil-

tonians like the P3H model. One project was written in Python, the other was written in C++.

Although originally developed for the P3H model, both codes have been designed with modularity

in mind; in principle, one can apply either code to a different model Hamiltonian or Observable

with the addition of a new Hamiltonian or Observable class that implements the required features.

In chapter 6, this functionality was used in the Python code to evolve and evaluate the total

spin-squared operator 𝑆2 alongside the P3H Hamiltonian.

The Python project Tensor-factor IMSRG (TFIMSRG) outsources tensor contraction at the

backend to the library TensorNetwork [2]. The C++ project Tensorized C++ IMSRG (TCIMSRG)

employs the Tensor Algebra Compiler (TACO) [1] as a backend for tensor contraction computation.

Both codes implement the tensor-train decomposition of occupation factors described in Chapter

5.3 and presented explicitly in Appendix A. The summations for the IMSRG flow equations have

been converted to tensor contractions and computed with these libraries. Future work may include

the extension of TCIMSRGwith a new, distributed version of TACO called Distributed Tensor Algebra

Compiler (DISTAL) [3], as well as the deployment of the tensor network framework in a new IMSRG

production code.

The P3H model IMSRG codes in Table C.1 are available at https://github.com/davis9ja/

tfimsrg and https://github.com/davis9ja/tcimsrg. The IMSRG production code, which

implements the IMSRG for realistic nuclear Hamiltonians, is available on request to the author, H.

Hergert.
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Project
Name

Language Dependencies Description

tfimsrg Python PyCI,
TensorNetwork1

Implements the IMSRG(2) flow for the
P3H model. Object oriented approach.
Machinery for IMSRG(3) implemented,
but not ready for experiment.

tcimsrg C++ dmcpp, TACO2 Implements the IMSRG(2) flow for the
P3H model. Object oriented approach.

IMSRG C MEQ, ME3BX, HFB,
GSL3, SUNDIALS4

Feature-complete production code project
which was updated with emulation func-
tionality as part of this dissertation.

Table C.1 Table of IMSRG codes developed for this dissertation. The listed dependencies are non-standard
libraries or code projects which must be installed and are listed in Tables C.2 and C.3.

C.2 Full Configuration Interaction Code for Schematic Hamiltonians

This code implements the Full Configuration Interaction approach, i.e., exact diagonalization,

for schematic Hamiltonians, as described in Chapter 2.10. The Hamiltonian is fully constructed

and diagonalized in the many-body basis. This is often possible for a schematic model like the P3H

model.

For realistic interactions, the model space dimensions required for the FCI approach quickly

become prohibitive, even if the sparsity of the Hamiltonian is exploited and computations are

limited to a few low-lying states, e.g., through the use of Lanczos or Arnoldi methods.

In the present work, we used this code for diagnostic purposes in IMSRG calculations with

reference ensembles, as discussed in Chapter 2.10. The code was also used to study the structure of

exact eigenstate of the P3H Hamiltonian as a function of its parameters (e.g., for the determination

of phase diagrams of this model).

We developed two FCI implementations for this work: one in Python and one in C++.

The Python code, located at https://gitlab.msu.edu/imsrg/pyci/-/tree/jacob-dev/
1Tensor contraction library that wraps TensorFlow, among other backends: https://github.com/google/

TensorNetwork/ [2]
2Tensor Algebra Compiler (TACO) which performs efficient tensor contraction in C++: https://github.com/

tensor-compiler/taco [1]
3GNU Scientific Library, https://www.gnu.org/software/gsl/
4SUite of Nonlinear and DIfferential/ALgebraic equation Solvers, https://github.com/LLNL/sundials
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imsrg_ci is forked from a rudimentary version originally developed by A. Zitzelberger, another

student in the working group. The C++ code is located at https://github.com/davis9ja/cci.

Project
Name

Language Dependencies Description

PyCI Python None Constructs the P3H Hamiltonian in a
Slater determinant basis via FCI.

CCI C++ DMCPP Constructs the P3H Hamiltonian in a
Slater determinant basis via FCI.

Table C.2 Table of FCI codes developed for this dissertation.

C.3 Density Matrix Codes

Both P3H IMSRG codes in Table C.1 implement reference state ensemble functionality, as

well as the normal ordering with respect to exact FCI eigenstates. This requires the computation

of density matrices and their use in normal ordering schemes. The following codes may be

used to generate one-, two-, and three-body density matrices, according to a user-specified Slater

determinant basis, for use with reference state ensemble studies. The DMCPP code is located at

https://github.com/davis9ja/dmcpp.

Project
Name

Language Dependencies Description

PyCI Python None The density_matrixmodule may be ex-
ported to compute density matrices inde-
pendent of FCI use.

DMCPP C++ None Compute density matrices for specified
SD basis. Compiled as a static library
and intended for import to IMSRG C++
code.

Table C.3 Table of density matrix codes developed for this dissertation.

C.4 IMSRG Emulation using Dynamic Mode Decomposition

The functionality for emulating an IMSRG flow using Dynamic Mode Decomposition (DMD)

is wrapped into the IMSRG production code as well as TCIMSRG. For independent implementations

and parametric emulation, the package IMSRG-EMU was developed as part of this dissertation.

The package is written in Python and provides a simple command-line interface for running
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emulations on archived data; however, the classes which perform the emulations can be exported to

user Python codes for additional functionality and independent experimentation. The IMSRG-EMU

code is located at https://github.com/davis9ja/imsrg_emu.

Project
Name

Language Dependencies Description

IMSRG-EMU Python None Provides interface for computing a stan-
dard, projected DMD emulation on an in-
put dataset (Chapter 7.2) as well as com-
puting a parametric emulation with train-
ing on an appropriate training set (Chapter
7.3).

Table C.4 Table of IMSRG emulation codes, using DMD, developed as contribution to this dissertation
work.

C.5 Full Table of Contributed Codes

For reference, we have compiled all contributed codes outlined in Appendix sections C.1 through

C.4 into a single table. Refer to each code’s user documentation for a complete description of their

syntax and usage.

Project
Name

Language Dependencies Location

TFIMSRG Python PyCI,
TensorNetwork

https://github.com/davis9ja/
tfimsrg

TCIMSRG C++ dmcpp, TACO https://github.com/davis9ja/
tcimsrg

IMSRG C MEQ, ME3BX, HFB,
GSL, SUNDIALS

Available upon request to the author, H.
Hergert

PyCI Python None https://gitlab.msu.edu/imsrg/
pyci/-/tree/jacob-dev/imsrg_ci

CCI C++ DMCPP https://github.com/davis9ja/cci
DMCPP C++ None https://github.com/davis9ja/

dmcpp
IMSRG-EMU Python None https://github.com/davis9ja/

imsrg_emu

Table C.5 Complete list of code projects and contributed extensions developed as part of this dissertation.
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